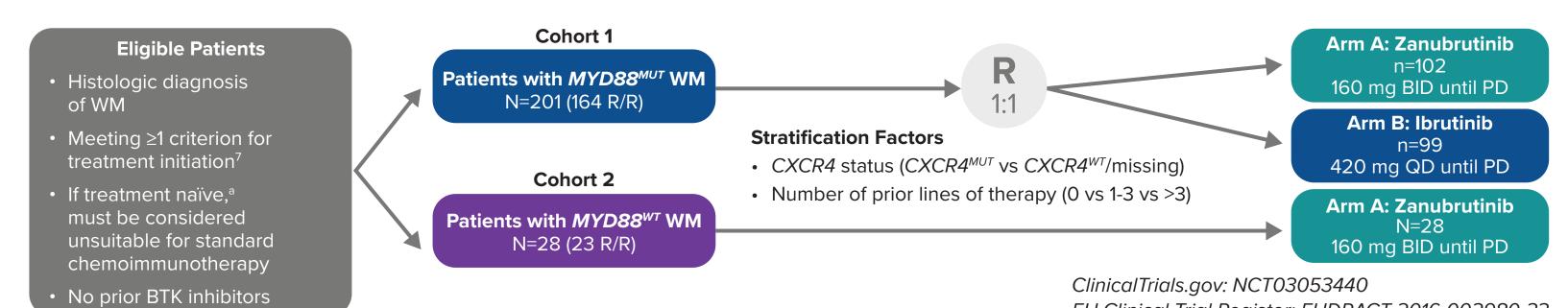
# ASPEN: Long-term follow-up results of a phase 3 randomized trial of zanubrutinib versus ibrutinib in patients with Waldenström macroglobulinemia

Constantine S. Tam, MBBS, MD, FRACP, FRCPA¹; Ramón Garcia-Sanz, MD, PhD²; Stephen Opat, FRACP, FRCPA¹; Roger G. Owen, MD8; Paula Marlton, MBBS (Hons), FRACP, FRCPA¹; Roger G. Owen, MD8; Paula Marlton, MBBS (Hons), FRACP, FRCPA¹; Roger G. Owen, MD8; Paula Marlton, MBBS (Hons), FRACP, FRCPA¹; Roger G. Owen, MD8; Paula Marlton, MBBS (Hons), FRACP, FRCPA¹; Roger G. Owen, MD8; Paula Marlton, MBBS (Hons), FRACP, FRCPA¹; Roger G. Owen, MD8; Paula Marlton, MBBS (Hons), FRACP, FRCPA¹; Roger G. Owen, MD8; Paula Marlton, MBBS (Hons), FRACP, FRCPA¹; Roger G. Owen, MD8; Paula Marlton, MBBS (Hons), FRACP, FRCPA¹; Roger G. Owen, MD8; Paula Marlton, MBBS (Hons), FRACP, FRCPA¹; Roger G. Owen, MD8; Paula Marlton, MBBS (Hons), FRACP, FRCPA¹; Roger G. Owen, MD8; Paula Marlton, MBBS (Hons), FRACP, FRCPA¹; Roger G. Owen, MD8; Paula Marlton, MBBS (Hons), FRACP, FRCPA¹; Roger G. Owen, MD8; Paula Marlton, MBBS (Hons), FRACP, FRCPA¹; Roger G. Owen, MD8; Paula Marlton, MBBS (Hons), FRACP, FRCPA¹; Roger G. Owen, MD8; Paula Marlton, MBBS (Hons), FRACP, FRCPA¹; Roger G. Owen, MD8; Paula Marlton, MBBS (Hons), FRACP, FRCPA¹; Roger G. Owen, MD8; Paula Marlton, MBBS (Hons), FRACP, FRCPA¹; Roger G. Owen, MD8; Paula Marlton, MBBS (Hons), FRACP, FRCPA¹; Roger G. Owen, MD8; Paula Marlton, MBBS (Hons), FRACP, FRCPA¹; Roger G. Owen, MD8; Paula Marlton, MBBS (Hons), FRACP, FRCPA¹; Roger G. Owen, MD8; Paula Marlton, MBBS (Hons), FRACP, FRCPA¹; Roger G. Owen, MBBS (Hons), FRACP, FRCPA¹; Roger G. Owen, MBBS (Hons), FRACP, FRCPA¹; Roger G. Owen, MBBS (Hons), FRACP, FR Bjorn E. Wahlin, MD, PhD<sup>10</sup>; Alessandra Tedeschi, MD<sup>11</sup>; Jorge J. Castillo, MD<sup>12</sup>; Tanya Siddiqi, MD<sup>13</sup>; Christian Buske, MD<sup>16</sup>; Jane Huang, MD<sup>16</sup>; Jane Huang, MD<sup>16</sup>; and Meletios A. Dimopoulos, MD<sup>17</sup>

<text> <text> San Mateo, CA, USA; and <sup>17</sup>National and Kapodistrian University of Athens, Athens, Greece

### BACKGROUND

- Zanubrutinib is a potent, selective, and irreversible next-generation BTK inhibitor designed to maximize BTK occupancy and minimize inhibition of
- Zanubrutinib has demonstrated a complete and sustained BTK occupancy in peripheral blood mononuclear cells and lymph nodes²
- Zanubrutinib has shown equipotency against BTK compared with ibrutinib. Zanubrutinib has high selectivity for BTK and minimal off-target inhibition of
- Favorable drug interaction properties allow zanubrutinib to be co-administered with strong or moderate CYP3A inhibitors (eg, antifungals) at a reduced dose, plus proton pump inhibitors, acid-reducing agents, and antithrombotic agents<sup>3,4</sup>


### OBJECTIVES

- Primary Objective: To compare the efficacy of zanubrutinib vs ibrutinib in patients with activating MYD88<sup>MUT</sup> WM; primary endpoint was the CR+VGPR rate **Secondary Objectives:** To further compare the efficacy, clinical benefit, and antilymphoma effects of zanubrutinib vs ibrutinib, and to evaluate safety
- and tolerability of zanubrutinib vs ibrutinib as measured by the incidence, timing, and severity of treatment-emergent AEs according to NCI CTCAE v4.03 **Exploratory Objectives:** To evaluate the efficacy and safety of zanubrutinib in patients with MYD88<sup>WT</sup> WM and the efficacy of zanubrutinib vs ibrutinib
- according to CXCR4 gene mutation in patients with MYD88<sup>MUT</sup> WM

### METHODS

■ ASPEN is an open-label, multicenter, randomized phase 3 study of zanubrutinib vs ibrutinib in patients with WM (Figure 1)

Figure 1: ASPEN Study Design: Zanubrutinib vs Ibrutinib in WM<sup>5,6</sup>

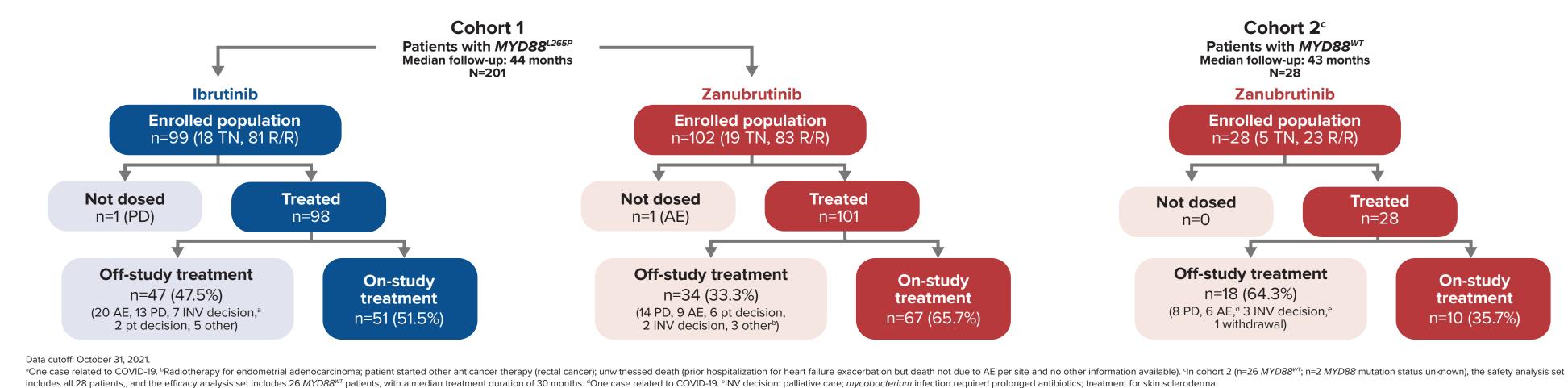


### Cohort assignment

<sup>a</sup>Up to 20% of the overall population

- Bone marrow MYD88 and CXCR4 mutations were assessed centrally at study entry (NeoGenomics Laboratory, Aliso Viejo)<sup>8,9</sup>
- The MYD88<sup>MUT</sup> assay includes a wild-type allele-blocking approach (LOD, 0.5%)<sup>7,8</sup> and detects all mutations in the region encompassing amino acid Alanine<sup>260</sup>-Proline<sup>278</sup>, which includes the predominant mutation in WM, MYD88<sup>L265P</sup>
- Patients were assigned to cohort 1 ( $MYD88^{MUT}$ ; randomized) or exploratory cohort 2 ( $MYD88^{WT}$  or MYD88 unknown; nonrandomized) **CXCR4** mutation detection
- Standard polymerase chain reaction/bidirectional Sanger sequencing assay to detect CXCR4WHIM mutation was performed at screening. Randomization in cohort 1 was stratified according to CXCR4 mutation status (CXCRWHIM vs CXCRWT/missing; LOD, 10%-15%) ■ CXCR4 mutation status was assessed retrospectively by NGS using residual DNA samples or duplicate bone marrow biopsy sample (LOD, 0.25%)<sup>7-9</sup>
- Response assessments ■ Responses were assessed according to response criteria in the NCCN® WM guidelines and modified Owen criteria9 as assessed by the independent
- review committee (primary analysis) and by the investigator

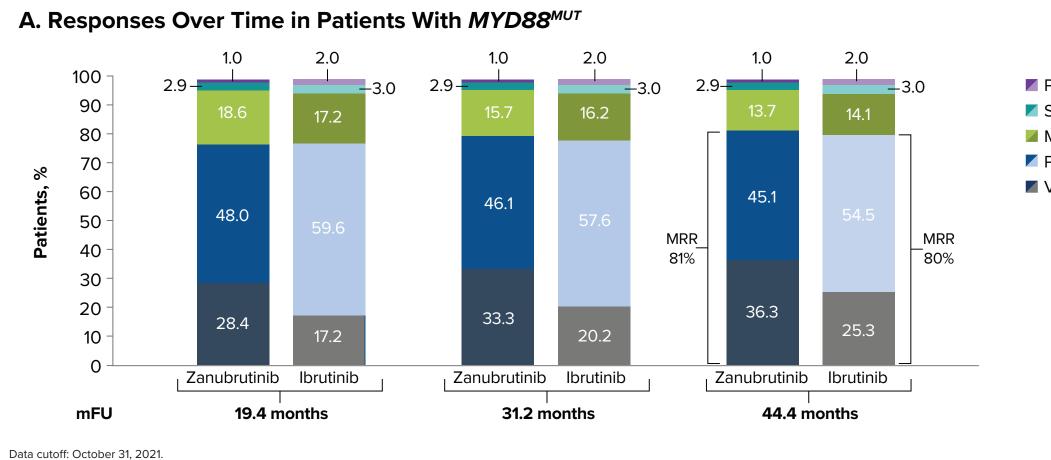
### ■ Efficacy endpoints: response rates (CR+VGPR, major and overall responses), duration of response, time to response, time to next treatment, PFS, and OS

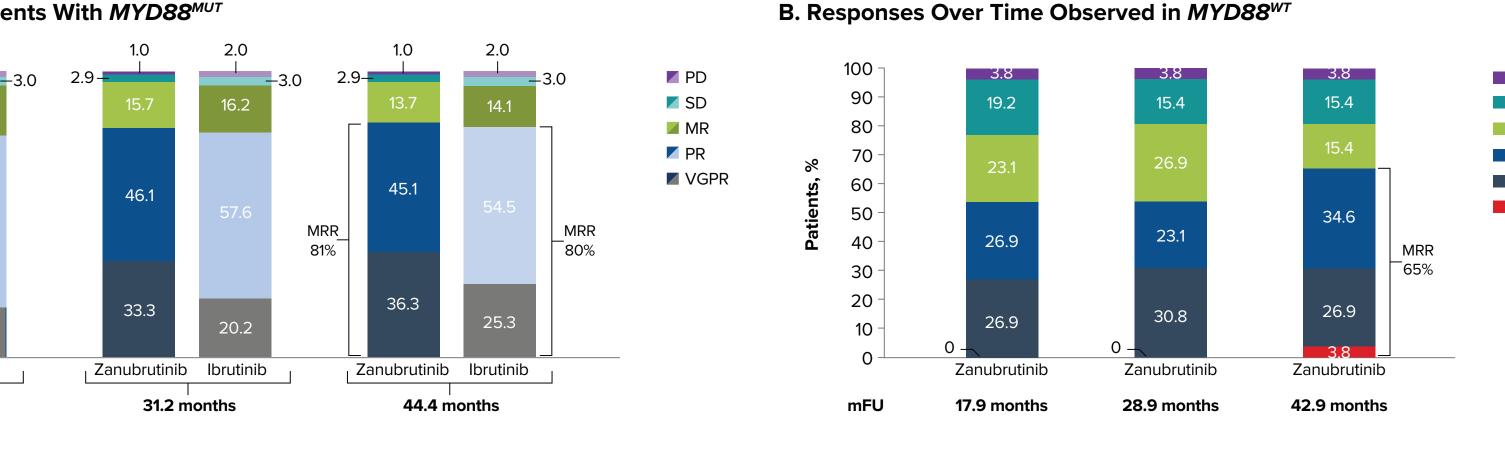

### **RESULTS**

- Both arms in cohort 1 were balanced except for patients aged >75 years, patients with  $CXCR4^{MUT}$  by NGS, and patients with hemoglobin ≤110 g/L, which were higher on the zanubrutinib arm (**Table 1**)
- In cohort 2, patients aged >75 years were more frequent (42.9%)

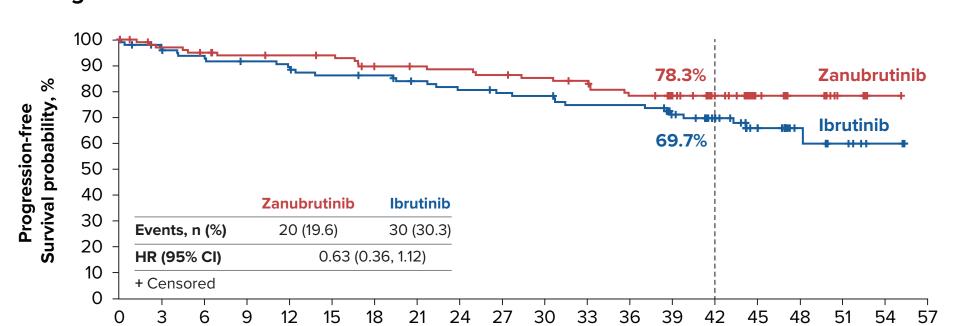
|                                                 | Со               | Cohort 2             |                     |
|-------------------------------------------------|------------------|----------------------|---------------------|
| Characteristics                                 | Ibrutinib (n=99) | Zanubrutinib (n=102) | Zanubrutinib (N=28) |
| Age, years median (range)                       | 70 (38-90)       | 70 (45-87)           | 72 (39-87)          |
| >65 years, n (%)                                | 70 (70.7)        | 61 (59.8)            | 19 (67.9)           |
| >75 years, n (%)                                | 22 (22.2)        | 34 (33.3)            | 12 (42.9)           |
| Sex, n (%)                                      |                  |                      |                     |
| Male                                            | 65 (65.7)        | 69 (67.6)            | 14 (50.0)           |
| Prior lines of therapy, n (%)                   |                  |                      |                     |
| 0                                               | 18 (18.2)        | 19 (18.6)            | 5 (17.9)            |
| 1-3                                             | 74 (74.7)        | 76 (74.5)            | 20 (71.4)           |
| >3                                              | 7 (7.1)          | 7 (6.9)              | 3 (10.7)            |
| Genotype by NGS, n (%)                          |                  |                      |                     |
| CXCR4 <sup>WT</sup>                             | 72 (72.7)        | 65 (63.7)            | 27 (96.4)           |
| CXCR4 <sup>MUT</sup>                            | 20 (20.2)        | 33 (32.4)            | 1 (3.6)             |
| Unknown                                         | 7 (7.1)          | 4 (3.9)              | 0 (0.0)             |
| IPSS WM, n (%)                                  |                  |                      |                     |
| Low                                             | 13 (13.1)        | 17 (16.7)            | 5 (17.9)            |
| Intermediate                                    | 42 (42.4)        | 38 (37.3)            | 11 (39.3)           |
| High                                            | 44 (44.4)        | 47 (46.1)            | 12 (42.9)           |
| Hemoglobin ≤110 g/L, n (%)                      | 53 (53.5)        | 67 (65.7)            | 15 (53.6)           |
| Baseline IgM (g/L, central lab), median (range) | 34.2 (2.4-108.0) | 31.8 (5.8-86.9)      | 28.5 (5.6-73.4)     |
| Bone marrow involvement (%), median (range)     | 60 (0-90)        | 60 (0-90)            | 22.5 (0-50)         |
| Extramedullary disease by investigator, n (%)   | 66 (66.7)        | 63 (61.8)            | 16 (57.1)           |

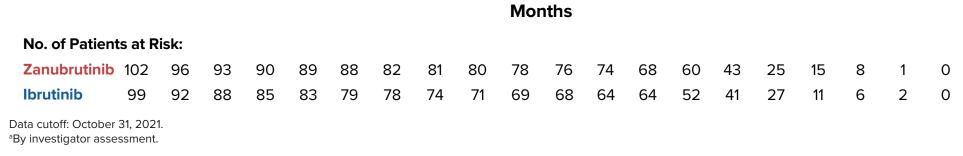
### RESULTS

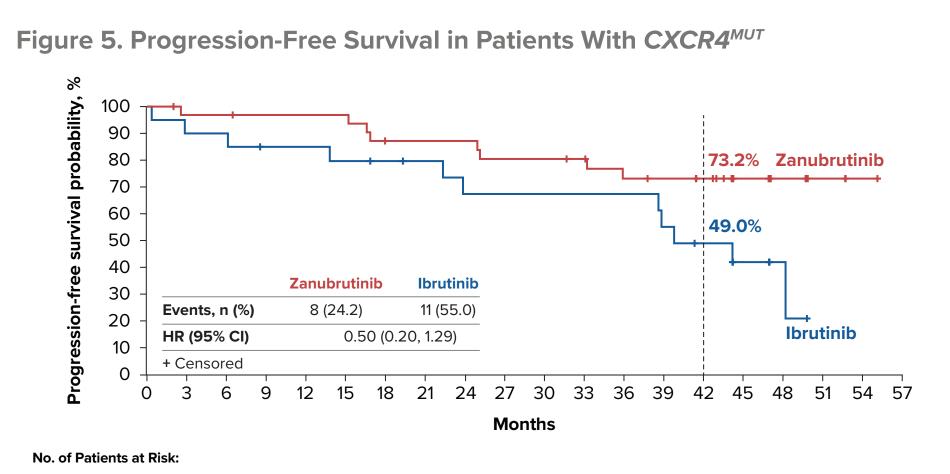

- In cohort 1, 51 (51.5%) patients treated with ibrutinib and 67 (65.7%) patients treated with zanubrutinib remained in the study (Figure 2); main reasons for discontinuation were PD (n=14 and n=13) and AEs (n=9 and n=20) for zanubrutinib and ibrutinib, respectively
- In cohort 2, 10 (35.7%) patients treated with zanubrutinib remained in the study; main reasons for discontinuation were progressive disease (n=8) and AEs (n=6)




EU Clinical Trial Register: EUDRACT 2016-002980-33


- In cohort 1, the investigator-assessed cumulative response rate increased over time in both treatment arms (Figure 3A) - No CRs were observed in cohort 1. Response rate of CR+VGPR was numerically higher at all time points with zanubrutinib compared with ibrutinib
- At 44.1 months median follow-up, CR+VGPR rates by investigator were 36.3% (zanubrutinib) vs 25.3% (ibrutinib)
- Median time to CR+VGPR was shorter for zanubrutinib: 6.7 months (range, 1.9-42.0) vs ibrutinib: 16.6 months (range, 2.0-49.9)
- Event-free rate for the duration of CR+VGPR at 24 months was higher for zanubrutinib: 90.6% (range, 73.6-96.9) vs ibrutinib: 79.3% (range, 53.5-91.8)
- Median PFS and median OS were not yet reached, with hazard ratio estimates favoring zanubrutinib in cohort 1 (Figure 4)
- In patients with CXCR4<sup>MUT</sup> by NGS, zanubrutinib demonstrated deeper and faster responses, as well as favorable PFS, compared with ibrutinib (Figure 5 and Table 2)
- In cohort 2 (MYD88<sup>WT</sup>), zanubrutinib demonstrated a CR in 1 patient with major response rate of 65% (including 31% CR+VGPR) overall (**Figure 3B**)
- Event-free rates of PFS and OS at 42 months were 53.8% (95% CI: 33.3, 70.6) and 83.9% (95% CI: 62.6, 93.7), respectively


### Figure 3: Best Overall Response by Investigator Over Time






### Figure 4: Progression-Free and Overall Survivals in ITT population (Cohort 1) A. Progression-Free Survivala







brutinib 20 18 18 16 16 15 14 13 11 11 11 11 9 7 4 2 0

## B. Overall Survival<sup>a</sup> % 00 **57.5**% 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60

## Table 2: Response Assessment by CXCR4 Status<sup>a</sup>

**Bold** text indicates >10% difference between arms. Data cutoff: October 31, 2021.

| CXC                 | CXCR4 <sup>MUT</sup>                                             |                                                                                                                | CR4 <sup>WT</sup>                                                                                                                                                 |
|---------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| lbrutinib<br>(n=20) | Zanubrutinib<br>(n=33)                                           | lbrutinib<br>(n=72)                                                                                            | Zanubrutinib<br>(n=65)                                                                                                                                            |
| 2 (10.0)            | 7 (21.2)                                                         | 22 (30.6)                                                                                                      | 29 (44.6)                                                                                                                                                         |
| 13 (65.0)           | 26 (78.8)                                                        | 61 (84.7)                                                                                                      | 54 (83.1)                                                                                                                                                         |
| 19 (95.0)           | 30 (90.9)                                                        | 68 (94.4)                                                                                                      | 63 (96.9)                                                                                                                                                         |
| 6.6                 | 3.4                                                              | 2.8                                                                                                            | 2.8                                                                                                                                                               |
| 31.3                | 11.1                                                             | 11.3                                                                                                           | 6.5                                                                                                                                                               |
|                     | lbrutinib<br>(n=20)<br>2 (10.0)<br>13 (65.0)<br>19 (95.0)<br>6.6 | Ibrutinib (n=20) Zanubrutinib (n=33)   2 (10.0) 7 (21.2)   13 (65.0) 26 (78.8)   19 (95.0) 30 (90.9)   6.6 3.4 | Ibrutinib (n=20) Zanubrutinib (n=33) Ibrutinib (n=72)   2 (10.0) 7 (21.2) 22 (30.6)   13 (65.0) 26 (78.8) 61 (84.7)   19 (95.0) 30 (90.9) 68 (94.4)   6.6 3.4 2.8 |

### **Long-Term Safety and Tolerability**

- Zanubrutinib when compared with ibrutinib had fewer AEs leading to death, treatment discontinuation, and dose reduction (Table 3 and Figure 6)
- Most common AEs that led to discontinuation were cardiac disorder and infection (4% each) with ibrutinib vs second malignancy (4%) with zanubrutinib (**Table 3**) ■ The profile of AEs of interest favored zanubrutinib compared with ibrutinib (Table 4, Table 5, and Figure 7)

**Table 4. Most Common AEs (Cohort 1)** 

**Bold** text indicates rate of AEs with ≥10% (all grades) or ≥5% (grade ≥3) difference between arms.

**Table 5: AEs of Interest in Cohort 1** 

Data cutoff: October 31, 2021. \*Descriptive purposes only, 1-sided P < 0.025 in rate difference in all grades and/or grade  $\geq 3$ .

<sup>a</sup>Preferred terms by Medical Dictionary for Regulatory Activities v24.0; excluding cytopenia, cytopenias are reported in **Table 5**.

Upper respiratory tract

Muscle spasms<sup>3</sup>

Peripheral edema

**AEs.**<sup>a</sup> n (%)

- The prevalence of atrial fibrillation, hypertension, and bleeding were lower in the zanubrutinib arm at all time intervals
- Neutropenia occurred early, and prevalence decreased over time for patients receiving zanubrutinib
- Prevalence of infection decreased over time and to a greater extent in the zanubrutinib arm
- A similar safety profile for zanubrutinib in cohort 1 was observed in cohort 2

### **Table 3: Overall Safety Summary**

|                             | Cohort 1               |                         | Cohort 2               |               |  |
|-----------------------------|------------------------|-------------------------|------------------------|---------------|--|
| egory, n (%)                | Ibrutinib<br>(n=98)    | Zanubrutinib<br>(n=101) | Zanubrutinib<br>(N=28) | AEs,ª n (%)   |  |
| ients with ≥1 AE            | 98 (100.0)             | 100 (99.0)              | 26 (92.9)              | Diarrhea      |  |
| rade ≥3                     | 71 (72.4)              | 75 (74.3)               | 20 (71.4)              | Upper respins |  |
| erious                      | 49 (50.0)              | 57 (56.4)               | 14 (50.0)              | Muscle sp     |  |
|                             | (0.000)                | 0. (00)                 | (= = = )               | Contusion     |  |
| E leading to death          | 5 (5.1) <sup>a</sup>   | 3 (3.0) <sup>b</sup>    | 3 (10.7) <sup>c</sup>  | Arthralgia    |  |
| E leading to treatment      | 20 (20.4) <sup>d</sup> | 9 (8.9) <sup>e</sup>    | 6 (21.4) <sup>f</sup>  | Hypertens     |  |
| scontinuation               |                        |                         |                        | Peripheral    |  |
| E leading to dose reduction | 26 (26.5)              | 16 (15.8)               | 2 (7.1)                | Epistaxis     |  |
| E leading to dose held      | 62 (63.3)              | 63 (62.4)               | 18 (64.3)              | Atrial fibri  |  |
|                             |                        |                         |                        | Cough         |  |
| OVID-19–related AE          | 4 (4.1)                | 4 (4.0)                 | 2 (7.1)                | Fatigue       |  |

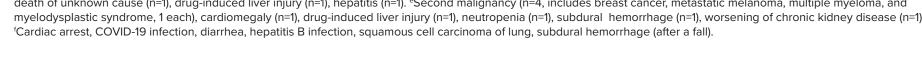
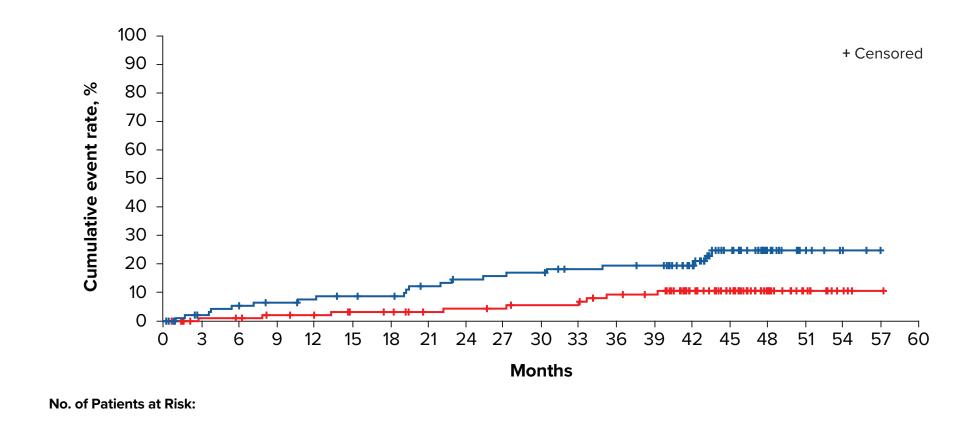
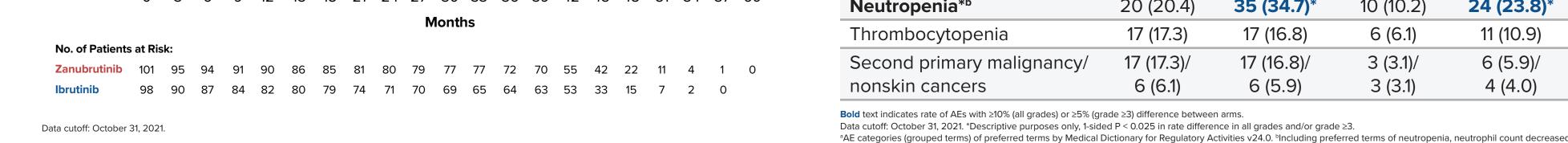
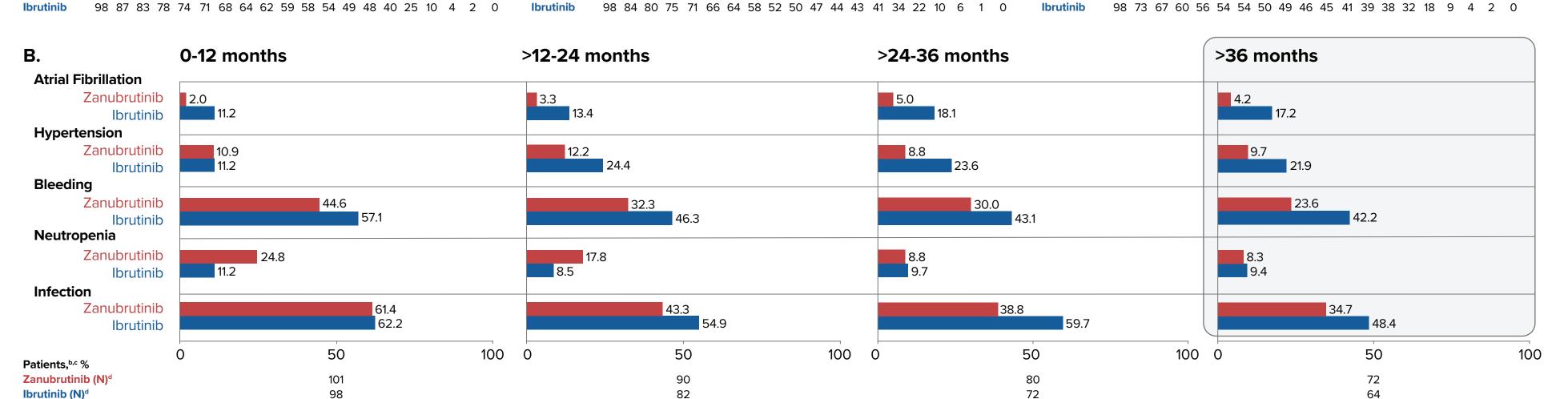






Figure 6: Time to Treatment Discontinuations Due to AEs (Cohort 1)


and sepsis, 2 each), respiratory, thoracic and mediastinal disorders (n=3), second malignancy (n=3), blood and lymphatic system disorders (n=2), renal and urinary disorders (n=1





### Figure 7: (A) Time to and (B) Prevalence Analysis for AEs of Interest (Cohort 1)





### Descriptive purpose only, 2-sided P value. Events of the same preferred term that occurred within 1 day of the previous event were combined as 1 event. Patients with ongoing or new events in the interval or who discontinued treatment but the time fro first dose date to the earliest date (last dose date +30 days, initiation of new anticancer therapy, end of study, death or cutoff date) is within the time interval.

### CONCLUSIONS

- Zanubrutinib, with long-term follow-up, continued to demonstrate clinically meaningful efficacy in patients with WM
- Although not statistically significant at primary analysis, a consistent trend of deeper, earlier, and more durable responses CR+VGPR compared with ibrutinib was observed
- Zanubrutinib provided faster and deeper responses in patients with *CXCR4*<sup>MUT</sup>
- PFS and OS continued to favor zanubrutinib treatment
- At median follow-up of nearly 4 years, 66% of patients remain on treatment with zanubrutinib versus 52% with ibrutinib
- Responses to zanubrutinib in patients with MYD88<sup>WT</sup> (cohort 2) continued to deepen over time
- With longer follow-up, safety advantages of zanubrutinib remained consistent with less off-target activity compared with ibrutinib
- Fewer AEs leading to treatment discontinuation, dose reductions, and deaths occurred in the zanubrutinib arm
- Cumulative incidences of atrial fibrillation, diarrhea, hypertension, muscle spasm, and pneumonia were lower in patients receiving zanubrutinib
- Despite a higher rate of neutropenia in the zanubrutinib arm, infection rates were similar and more patients in the ibrutinib arm had grade ≥3 infections

### REFERENCES

Grade ≥3 (≥5%)

Grade ≥3

3 (3.0)

Ibrutinib Zanubrutinib Ibrutinib Zanubrutinik

**34 (34.7)** 23 (22.8) 2 (2.0) 3 (3.0)

Ibrutinib Zanubrutinib Ibrutinib Zanubrutinib

20 (20.4)\*

78 (79.6) 80 (79.2) **27 (27.6)** 22 (21.8)

(n=98) (n=101) (n=98)

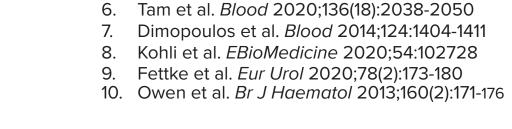
15 (14.9)

32 (32.7)

24 (24.5)

21 (21.4)

21 (21.4)\*


21 (21.4) 18 (17.8)

20 (20.4) 19 (18.8)

(n=98)

- . Guo et al. J Med Chem 2019:62(17):7923-794 2. Tam et al. *Blood* 2019;134(11):851-859 3. Mu et al. Cancer Chemother Pharmacol
- 4. Ou et al *Clin Transl Sci* 2021;14(2):764-772

ABBREVIATIONS



AE, adverse event; BID, twice daily; BTK, Bruton tyrosine kinase; CI, confidence interval; CR, complete response; CR+VGPR, complete response or very good partial response; CTCAE, Common Terminology Criteria for Adverse Events; CXCR4, C-X-C chemokine receptor type 4 gene; CYP3A, cytochrome P450 3A; EAIR, exposure-adjusted incidence rates (persons per 100 person-months); EGFR, epidermal growth factor receptor; HR, hazard ratio; IgM, immunoglobulin M; INV, investigator; IPSS, International Prognostic Scoring System; ITT, intent to treat; LOD, limit of detection; mFU, median follow-up; MYD88, myeloid differentiation primary response gene 88; MR, major response; MRR, major response rate; MUT, mutant; NCCN, National Comprehensive Cancer Network; NCI, National Cancer Institute; NGS, next-generation sequencing; OS, overall survival; PFS, progression-free survival; PD, progressive disease; PR, partial response; pt, patient; QD, daily; R, randomization; R/R, relapsed/refractory; SD, stable disease; TEC, tyrosine kinase expressed in hepatocellular carcinoma; TN, treatment naïve; VGPR, very good partial response; WM, Waldenström

macroglobulinemia; WHIM, warts, hypogammaglobulinemia, infections, and myelokathexi; WT, wild type.

### DISCLOSURES

Janssen, AbbVie, BeiGene, Loxo Oncology, Novartis **RGS:** consulting at Janssen; travel expense from Janssen, Takeda; royalties from BIOMED 2 primers; honoraria from Janssen, Takeda, Amgen, BeiGene, Novartis, Astellas Pharma; research funding from Gilead Sciences, Incyte, Astellas Pharma **SO:** honoraria from AbbVie, BeiGene, AstraZeneca, Bristol Myers Squibb, CSL Behring, Gilead, Janssen, Merck, Roche, Takeda; consulting at AbbVie, BeiGene, AstraZeneca, Bristol Myers Squibb, CSL Behring, Gilead, Janssen, Merck, Roche, Takeda; research funding from AbbVie, AstraZeneca, BeiGene, CSL Behring, Gilead. Janssen, Merck, Pharmacyclics, Roche, Takeda **SD:** honoraria from Janssen, BeiGene, Sanofi; consulting at Janssen, BeiGene, Sanofi; speakers bureau at Janssen; expert testimony at Janssen: travel with BeiGene. Janssen WJ: consulting at AstraZeneca, BeiGene, Janssen, Loxo Oncology, Sandoz, Roche; research funding at AbbVie, Astra Zeneca, Bayer, BeiGene, Celltrion, Celgene, Debiopharm, Epizyme, Incyte, Janssen, Loxo Oncology, Merck, Mei Pharma, MorphoSys, Novo Nordisk, Roche, Sandoz, Takeda, TG Therapeutics GC: research funding at BeiGene RO: consulting at BeiGene, Janssen-Cilag; honoraria at Janssen-Cilag, BeiGene, AstraZeneca PM: consulting at Roche, Janssen-Cilag, Novartis, AbbVie, Astellas Pharma, Pfizer, BeiGene, Jazz Pharmaceuticals, Gilead Sciences;

**CST:** research funding at Janssen, AbbVie, BeiGene; honoraria at

Squibb, Pharmacyclics, Janssen, BeiGene; research funding at AstraZeneca, TG therapeutics, Bristol-Myers Squibb, Celgene, Juno Therapeutics, Oncternal, Ascentage Pharma, Kite Pharma CB: honoraria with Roche/Genentech, Janssen, BeiGene, Novarti Pfizer, Incyte, AbbVie, Gilead Sciences, Celltrion, MorphoSys, Regeneron; consulting at Gilead Sciences, Janssen, Roche, Pfizer BeiGene, Celltrion, AbbVie, Incyte, Regeneron, MorphoSys, Novartis; speakers bureau at Roche, Janssen, BeiGene, Celltrion, AbbVie, Pfizer Gilead Sciences; research funding from Roche/Genentech, Janssen, Celltrion, MSD, Pfizer, Amgen VL: consulting at BeiGene, Janssen, AstraZeneca, Lilly, AbbVie; speakers bureau at BeiGene, AstraZeneca, AbbVie; travel with AbbVie, AstraZeneca, Roche Pharma AG, BeiGene, Amgen, Janssen Oncology, AbbVie, MSD Oncology, Lilly **WC:** employment with BeiGene; stock with BeiGene, Bristol-Myers JS, AC: employment and stock with BeiGene **IH:** employment with BeiGene, Protara Therapeutics; stock with BeiGene, Roche; honoraria with BeiGene; royalties with BeiGene MD: consulting with Amgen, Janssen-Cilag, Takeda, Bristol Myers Squibb, BeiGene; honoraria with Amgen, Takeda, Janssen-Cilag, Bristol Myers Squibb, BeiGene **AT:** consulting at Janssen, BeiGene, AstraZeneca, AbbVie; speakers **HL:** nothing to disclose

IC: consulting at Janssen, Roche/Genentech, BeiGene, AbbVie

TS: consulting at AstraZeneca, Kite Pharma, Bristol Myers Squibb

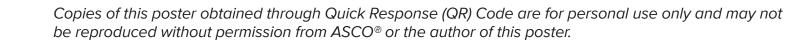
Celgene, BeiGene; speakers bureau at AstraZeneca, Bristol Myers

Pharmacyclics, Polyneuron; research funding at Pharmacyclics,

AbbVie, Janssen, BeiGene, TG Therapeutics, AstraZeneca

### CORRESPONDENCE

Constantine S. Tam, MBBS, MD, FRACP, FRCPA Peter MacCallum Cancer Centre Melbourne, Victoria, Australia Constantine.tam@alfred.org.au


honoraria from Roche, AbbVie

**BW:** research funding from Roche, Incyte

bureau at AbbVie, AstraZeneca, Janssen, BeiGene

### ACKNOWLEDGMENTS

This study was sponsored by BeiGene. Editorial support was provided by Bio Connec LLC and funded by BeiGene.







Bold text indicates >10% difference between arms in cohort 1