

American Society of Hematology Helping hematologists conquer blood diseases worldwide

SEQUOIA: RESULTS OF A PHASE 3 RANDOMIZED STUDY OF ZANUBRUTINIB VERSUS BENDAMUSTINE + RITUXIMAB IN PATIENTS WITH TREATMENT-NAIVE CHRONIC LYMPHOCYTIC LEUKEMIA/SMALL LYMPHOCYTIC LYMPHOMA

<u>Constantine S. Tam, MBBS, MD</u>^{1,2,3,4}; Krzysztof Giannopoulos, MD, PhD^{5,6}; Wojciech Jurczak, MD, PhD⁷; Martin Šimkovič, MD, PhD^{8,9}; Mazyar Shadman, MD, MPH^{10,11}; Anders Österborg, MD, PhD^{12,13}; Luca Laurenti, MD¹⁴; Patricia Walker, MBBS, BMedSci, FRACP, FRCPA¹⁵; Stephen Opat, MBBS (Hons), FRACP, FRCPA^{16,17}; Henry Chan, MBChB, FRACP, FRCPA¹⁸; Hanna Ciepluch, MD, PhD¹⁹; Richard Greil, MD^{20,21,22}; Monica Tani, MD²³; Marek Trněný, MD²⁴; Danielle M. Brander, MD²⁵; Ian W. Flinn, MD, PhD²⁶; Sebastian Grosicki, MD, PhD²⁷; Em ma Verner, MBBS, BMedSci, FRCPA, FRCPA, FRACP^{28,29}; Jennifer R. Brown MD, PhD³⁰; Brad S. Kahl, MD³¹; Paolo Ghia, MD, PhD³²; Jianyong Li, MD, PhD³³; Tian Tian, PhD³⁴; Lei Zhou, MD³⁴; Carol Marimpietri³⁴; Jason C. Paik, MD, PhD³⁴; Aileen Cohen, MD, PhD³⁴; Jane Huang, MD³⁴; Tadeusz Robak, MD, PhD³⁵; and Peter Hillmen, MBChB, PhD³⁶

¹Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; ²University of Melbourne, Parkville, Victoria, Australia; ³St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia; ⁴Royal Melbourne Hospital, Parkville, Victoria, Australia; ⁵Experimental Herratooncology Department, Medical University of Lublin, Lublin, Poland; ⁶Herratology Department, St. John's Cancer Centre, Lublin, Poland; ⁷Maria Sklodowska-Curie National Research Institute of Oncology, Krakow, Poland; ⁸Fourth Department of Internal Medicine - Haerratology, University Hospital, Hradec Kralove, Czech Republic; ⁹Faculty of Medicine, Charles University, Prague, Czech Republic; ¹⁰Fred Hutchinson Cancer Research Center, Seattle, WA, USA; ¹¹Department of Medicine, University of Washington, Seattle, WA, USA; ¹²Department of Oncology, Karolinska Instituet, Stockholm, Sweden; ¹⁴Fondazione Policinico Universitario A Gemelli UCSC, Rome, Italy; ¹⁵Peninsula Private Hospital, Frankston, Victoria, Australia; ¹⁶Monash Heath, Clayton, Victoria, Australia; ¹⁷Monash University, Clayton, Victoria, Australia; ¹⁶North Shore Hospital, Auckland, New Zealand; ¹⁹Copernicus Regional Oncology Center, Gdansk, Poland; ²⁰Third Medical Department with Herratology, Medical Oncology, Rheurratology and Infectiology, Paracelsus Medical University, Salzburg, Austria; ²¹Salzburg Cancer Research Institute (SCRI) Center for Clinical Cancer and Immunology Trials (CCCIT), Salzburg, Austria; ²²Cancer Cluster Salzburg (CCS), Salzburg, Austrai; ²³Herratology Unit, Santa Maria delle Croci Hospital, Ravenna, Italy; ²⁴First Department of Medicine, First Faculty of Medicine, Charles University, General Hospital, Prague, Czech Republic; ²³Herratologic Malignancies and Cellular Therapy, Duke University of Silesia, Katowice, Poland; ²⁶Concord Repatriation General Hospital, Concord, New South Wales, Australia; ³⁰Duniversity of Sydney, Sydney, New South Wales, Australia; ³⁰Dana-Farber Cancer Institute, Boston, MA, USA; ³¹Washington Uni

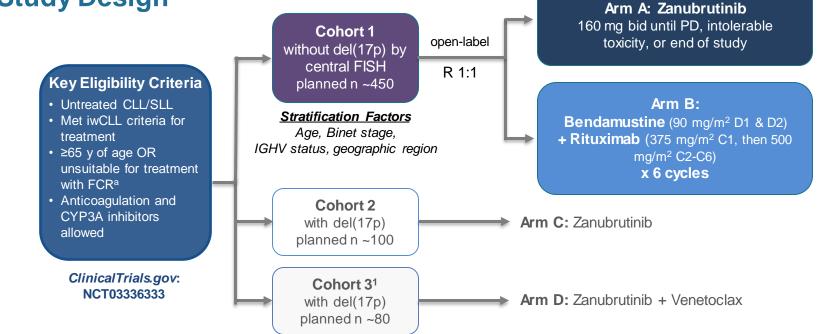
Sunday, December 12, 2021

642. Chronic Lymphocytic Leukemia: Clinical and Epidemiological

American Society of Hematology

63rd ASH Annual Meeting and Exposition, December 11-14, 2021 Abstract 396

Dr. Tam has received honoraria from Janssen, AbbVie, Roche, Novartis, Loxo, and BeiGene and has received research funding from AbbVie, Janssen, and BeiGene


INTRODUCTION

- Treatment of CLL/SLL has been transformed with the advent of effective inhibitors of B-cell receptor signaling, such as the BTK inhibitors ibrutinib and acalabrutinib
- Zanubrutinib (BGB-3111) is a highly selective second-generation BTK inhibitor designed to maximize BTK occupancy and minimize off-target effects^{1,2}
- Efficacy and safety of zanubrutinib has been recently demonstrated in two large randomized studies in Waldenström macroglobulinemia and relapsed/refractory CLL/SLL, with lower rates of atrial fibrillation when compared to ibrutinib^{3,4}
- Preliminary data showing high response rates with zanubrutinib in untreated patients with the high-risk genomic abnormality del(17p) have been recently published^{5,6}

BTK, Bruton tyrosine kinase; CLL, chronic lymphocytic leukemia; SLL, small lymphocytic lymphoma.

1. Guo Y, et al. *J Med Chem*. 2019;62:7923-7940. 2. Tam CS, et al. *Blood*. 2019;134: 851-859. 3. Tam CS, et al. *Blood*. 2020;146:2038-2050. 4. Hillmen P, et al. EHA 2021. Abstract LB1900. 5. Tam CS, et al. *Haematologica*. 2020;106:2354-2363. 6. Brow n JR, et al. *Blood*. 2020;136(suppl1):11-12.

SEQUOIA (BGB-3111-304) Study Design

^aDefined as Cumulative Illness Rating Scale >6, creatinine clearance <70 mL/min, or a history of previous severe infection or multiple infections within the last 2 years.

C, cycle; CLL/SLL, chronic lymphocytic leukemia/small lymphocytic lymphoma; CYP3A, cytochrome P450, family 3, subfamily A; D, day; del(17p), chromosome 17p deletion; FCR, fludarabine, cyclophosphamide, and rituximab; FISH, fluorescence in-situ hybridization; IRC, independent review committee; IGHV, gene encoding the immunoglobulin heavy chain variable region; iw CLL, International Workshop on CLL; ORR, overall response rate; PD, progressive disease: R, randomized.

1. Tedeschi A. et al. ASH 2021. Abstract 67.

Endpoints and Analyses for Cohort 1

Primary Endpoint

Progression-free survival (PFS) per independent review committee (IRC) assessment^a

Select Secondary Endpoints^a

- PFS per investigator assessment
- Overall response rate per IRC and investigator assessments
- Overall survival
- Safety

Analyses

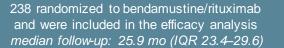
- One pre-specified interim analysis was planned at approximately 86 events
- Efficacy analyses were intention-to-treat

^aIRC and investigator response assessments per modified iw CLL criteria for CLL^{1,2} and Lugano criteria for SLL.³

CLL, chronic lymphocytic leukemia; IRC, independent review committee; iw CLL, International Workshop on CLL; PFS, progression-free survival; SLL, small lymphocytic lymphoma. 1. Hallek M, et al. *Blood*. 2008;111:5446-5456. 2. Cheson BD, et al. *J Clin Oncol*. 2012;30:2820-2822. 3. Cheson BD, et al. *J Clin Oncol*. 2014;32:3059-3067.

Patient Disposition

479 eligible patients without del(17p) were randomized


241 randomized to zanubrutinib and were included in the efficacy analysis *median follow-up: 26.4 mo (IQR 24.2–29.5)*

1 did not receive study treatment

240 received treatment and included in safety analysis

34 Discontinued treatment 11 Disease progression 20 Adverse events 1 Investigator discretion 2 Withdrawal by patient

206 are receiving zanubrutinib at data cutoff

11 did not receive study treatment

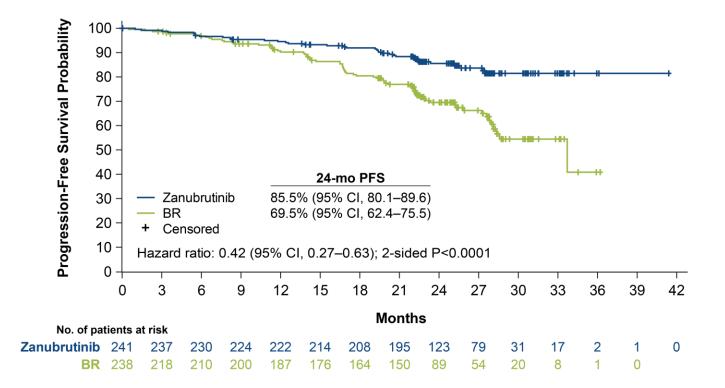
227 received treatment and included in safety analysis

188 completed regimen15 crossed over to receive zanubrutinib after centrally confirmed disease progression

^aOne patient discontinued after extended dose hold for an adverse event; 1 patient elected to discontinue treatment after multiple adverse events; 1 patient did not w ant to continue treatment. Enrollment Period: October 2017–July 2019. BR, bendamustine + rituximab; del(17p), chromosome 17p deletion; IQR, interquartile range.

Select Baseline Patient and Disease Characteristics

	<u>Arm A</u> Zanubrutinib (n=241)	<u>Arm B</u> Bendamustine + Rituximab (n=238)
Median age, years (IQR)	70 (66–75)	70 (66–74)
Age ≥65, n (%)	196 (81.3)	192 (80.7)
Male, n (%)	154 (63.9)	144 (60.5)
ECOG PS 2, n (%)	15 (6.2)	20 (8.4)
Geographic region, n (%)		
North America	34 (14.1)	28 (11.8)
Europe	174 (72.2)	172 (72.3)
Asia/Pacific	33 (13.7)	38 (16.0)
Binet stage C,ª n (%)	70 (29.0)	70 (29.4)
Bulky disease ≥5 cm, n (%)	69 (28.6)	73 (30.7)
Cytopenia at baseline, ^b n (%)	102 (42.3)	109 (45.8)
Unmutated IGHV gene, n/N (%)	125/234 (53.4)	121/231 (52.4)
Del(11q), n (%)	43 (17.8)	46 (19.3)
TP53 mutation, n/N (%)	15/232 (6.5)	13/223 (5.8)


^aPatients with SLL had Binet stage calculated as if they had CLL.

^bDefined as having anemia (hemoglobin ≤110 g/L) or thrombocytopenia (platelets ≤100×10⁹/L) or neutropenia (absolute neutrophil count ≤1.5×10⁹/L).

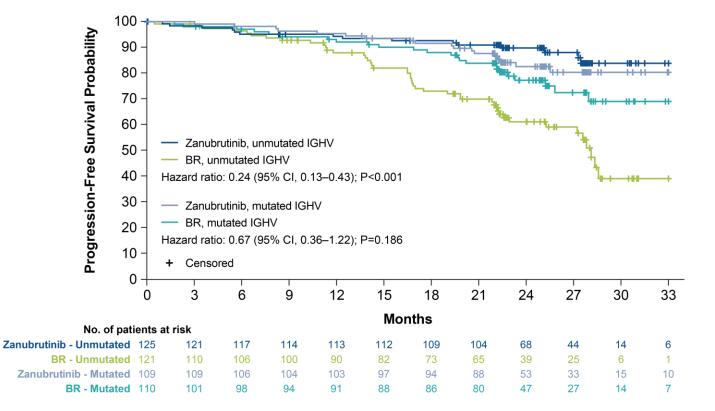
CLL, chronic lymphocytic leukemia; del(11q), chromosome 11q deletion; ECOG PS, Eastern Cooperative Oncology Group performance status; IQR, interquartile range; IGHV, gene encoding the immunoglobulin heavy chain variable region; SLL, small lymphocytic lymphoma; *TP53*, gene encoding tumor protein p53.

Progression-Free Survival Per IRC Assessment

BR, bendamustine + rituximab; IRC, independent review committee; PFS, progression-free survival.

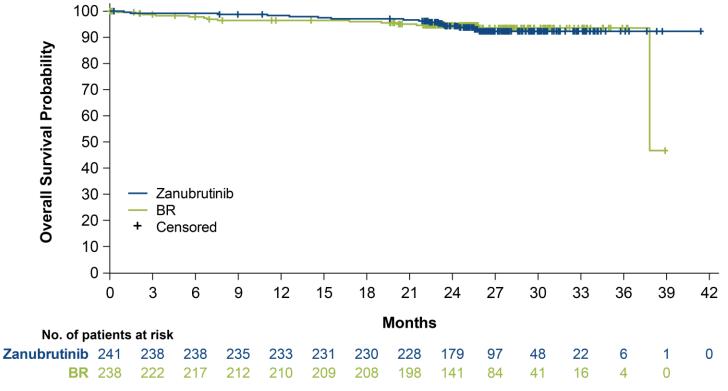
Progression-Free Survival Per IRC Assessment by Key Patient Subgroups

Event/Patient				
Subgroup	Zanubrutinib	BR		Hazard Ratio (95% CI), %ª
All Patients	36/241	71/238		0.42 (0.28–0.63)
Age (years) <65 ≥65	6/45 30/196	19/46 52/192	- -	0.25 (0.10–0.62) 0.47 (0.30–0.74)
Sex Male Female	24/154 12/87	47/144 24/94	→ —	0.39 (0.24–0.64) 0.45 (0.23–0.91)
Binet stage A or B C	24/171 12/70	52/168 19/70	- •	0.39 (0.24–0.64) 0.48 (0.23–1.00)
ECOG 0 ≥1	12/110 24/131	24/101 47/137	- •	0.39 (0.19–0.78) 0.43 (0.26–0.71)
Bulky disease (LDi <5 cm vs ≥5 cm) <5 cm ≥5 cm	21/172 15/69	44/165 27/73	- -	0.37 (0.22–0.63) 0.52 (0.27–0.97)
IGHV mutational status Mutated Unmutated	18/109 15/125	25/110 45/121		0.67 (0.36–1.22) 0.24 (0.13–0.43)
Cytopenias at baseline ^ь Yes No	21/102 15/139	34/109 37/129	_ - _	0.55 (0.32–0.95) 0.31 (0.17–0.57)
Chromosome 11q deletion Yes No	7/43 29/198	22/46 49/192	• <u> </u>	0.21 (0.09–0.50) 0.50 (0.32–0.80)
			0	1 2 3


^aHazard ratios were calculated using a stratified Cox regression model.

^bDefined as having anemia (hemoglobin \leq 110 g/L) or thrombocytopenia (platelets \leq 100 × 10⁹/L) or neutropenia (absolute neutrophil count \leq 1.5×10⁹/L).

BR, bendamustine + rituximab; ECOG, Eastern Cooperative Oncology Group; IGHV, gene encoding the immunoglobulin heavy chain variable region; IRC, independent review committee; LDi, longest diameter.



Progression-Free Survival Per IRC Assessment by IGHV Status

BR, bendamustine + rituximab; IGHV, gene encoding the immunoglobulin heavy chain variable region; IRC, independent review committee.

Median Follow - Up: 26.2mo. BR, bendamustine + rituximab.

Adverse Event Summary

	<u>Arm A</u> Zanubrutinib (n=240ª)	<u>Arm B</u> Bendamustine + Rituximab (n=227ª)
Any AE, n (%)	224 (93.3)	218 (96.0)
Grade ≥3 AE, n (%)	126 (52.5)	181 (79.7)
Serious AE, n (%)	88 (36.7)	113 (49.8)
Fatal AE, n (%)	11 (4.6)	11 (4.8)
AE leading to dose reduction, n (%)	18 (7.5)	84 (37.4)
AE leading to dose interruption/delay, n (%)	111 (46.3)	154 (67.8)
AE leading to discontinuation, n (%)	20 (8.3)	31 (13.7)

AEs were recorded until disease progression to support safety evaluation over an equivalent time period

^aSafety w as assessed in patients w ho received ≥1 dose of treatment; 1 patient in Arm A and 11 patients in Arm B did not receive treatment. AE, adverse event.

Common Adverse Events (≥12% of Patients in Any Arm)

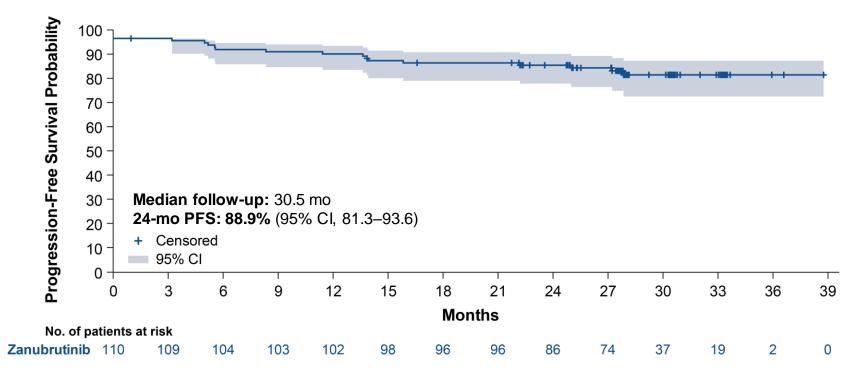
	<u>Arm A</u> Zanubrutinib (n=240ª)		<u>Arm B</u> Bendamustine + Rituximab (n=227ª)	
AE, n (%)	Any Grade	Grade ≥3	Any Grade	Grade ≥3
Contusion	46 (19.2)	0 (0.0)	8 (3.5)	0 (0.0)
Upper respiratory tract infection	41 (17.1)	2 (0.8)	27 (11.9)	2 (0.9)
Neutropenia ^b	37 (15.4)	27 (11.3)	129 (56.8)	116 (51.1)
Diarrhea	33 (13.8)	0 (0.0)	30 (13.2)	4 (1.8)
Arthralgia	32 (13.3)	2 (0.8)	20 (8.8)	1 (0.4)
Fatigue	28 (11.7)	3 (1.3)	36 (15.9)	2 (0.9)
Rash	26 (10.8)	0 (0.0)	44 (19.4)	6 (2.6)
Constipation	24 (10.0)	1 (0.4)	43 (18.9)	0 (0.0)
Nausea	24 (10.0)	0 (0.0)	74 (32.6)	3 (1.3)
Pyrexia	17 (7.1)	0 (0.0)	60 (26.4)	8 (3.5)
Vomiting	17 (7.1)	0 (0.0)	33 (14.5)	3 (1.3)
Anemia	11 (4.6)	1 (0.4)	43 (18.9)	4 (1.8)
Thrombocytopenia	9 (3.8)	4 (1.7)	31 (13.7)	16 (7.0)
Infusion-related reaction ^c	1 (0.4)	0 (0.0)	43 (18.9)	6 (2.6)

aSafety was assessed in patients who received ≥1 dose of treatment; 1 patient in Arm A and 11 patients in Arm B did not receive treatment.

^bPooled term with neutrophil count decreased.

^cDue to amphotericin B infusion.

AE, adverse event.


Adverse Events of Interest

	Zanubi	<u>Arm A</u> Zanubrutinib (n=240ª)		<u>n B</u> e + Rituximab 227ª)
AE, n (%)	Any Grade	Grade ≥3	Any Grade	Grade ≥3
Anemia	11 (4.6)	1 (0.4)	44 (19.4)	4 (1.8)
Neutropenia ^b	38 (15.8)	28 (11.7)	129 (56.8)	116 (51.1)
Thrombocytopenia ^c	11 (4.6)	5 (2.1)	40 (17.6)	18 (7.9)
Arthralgia	32 (13.3)	2 (0.8)	20 (8.8)	1 (0.4)
Atrial fibrillation	8 (3.3)	1 (0.4)	6 (2.6)	3 (1.3)
Bleeding ^d	108 (45.0)	9 (3.8)	25 (11.0)	4 (1.8)
Major bleeding ^e	12 (5.0)	9 (3.8)	4 (1.8)	4 (1.8)
Diarrhea	33 (13.8)	2 (0.8)	31 (13.7)	5 (2.2)
Hypertension ^f	34 (14.2)	15 (6.3)	24 (10.6)	11 (4.8)
Infections ^g	149 (62.1)	39 (16.3)	127 (55.9)	43 (18.9)
Myalgia	9 (3.8)	0 (0.0)	3 (1.3)	0 (0.0)
Other cancers	31 (12.9)	17 (7.1)	20 (8.8)	7 (3.1)
Dermatologic other cancers	16 (6.7)	2 (0.8)	10 (4.4)	2 (0.9)

^aSafety was assessed in patients who received ≥1 dose of treatment; 1 patient in Arm A and 11 patients in Arm B did not receive treatment. ^bNeutropenia, neutrophil count decreased, or febrile neutropenia. ^cThrombocytopenia or platelet count decreased. ^dPooled term of all-cause bleeding including bruising, petechiae, purpura, and contusion. ^eMajor bleeding included all grade ≥3, serious, and any-grade central nervous system hemorrhage. ^fHypertension, blood pressure increased, or hypertensive crisis. ^gAll infection terms pooled. AE, adverse event.

Cohort 2: PFS Per IRC Assessment in Patients With Del(17p)

Del(17p), chromosome 17p deletion; IRC, independent review committee; PFS, progression-free survival.

CONCLUSIONS

- Zanubrutinib demonstrated superiority in progression-free survival over bendamustine + rituximab (hazard ratio 0.42, 2-sided P<0.0001) as assessed by independent review
- Superiority was also observed across high-risk subgroups, such as patients with unmutated IGHV and del(11q)
- Consistent with other zanubrutinib studies, zanubrutinib appeared well tolerated with no new safety signals identified; the rate of atrial fibrillation was low
- These data demonstrate that a chemotherapy-free treatment using a potent and selective BTK inhibitor is safe and effective for patients with treatment-naive CLL/SLL

BTK, Bruton tyrosine kinase; CLL/SLL, chronic lymphocytic leukemia/small lymphocytic lymphoma; IGHV, gene encoding the immunoglobulin heavy chain variable region.

ACKNOWLEDGMENTS

- We would like to thank the SEQUOIA investigators, site support staff, and especially the patients for participating in this study
- We also would like to thank Vanitha Ramakrishnan, Maria Salaverri, Sowmya Kuwahara, Fangfang Yin, Andy Szeto, and Axel Gayko for their contributions to biomarker analysis, operational support, and data analysis
- This study was sponsored by BeiGene. Editorial support was provided by Bio Connections LLC and funded by BeiGene

Corresponding Author:

Constantine S. Tam, MBBS, MD, email: Constantine.Tam@petermac.org

Copies of this oral presentation obtained through Quick Response (QR) Code are for personal use only and may not be reproduced without permission from ASH[®] and the author of this presentation.

Presentation Slides: Plain Language Summary:

