Updated Analysis of Tislelizumab Plus Chemotherapy vs Chemotherapy Alone as First-line Treatment of Advanced Squamous Non-Small Cell Lung Cancer (SQ NSCLC)

Jie Wang¹, Shun Lu², Chunhong Hu³, Yuping Sun⁴, Kunyu Yang⁵, Mingwei Chen⁶, Jun Zhao⁷, Guohua Yu⁸, Xiangdong Zhou⁹, Guosheng Feng¹⁰, Yueyin Pan¹¹, Yan Yu¹², Jing Zhang¹³, Liang Liang¹³, Xiao Lin¹³, Xikun Wu¹³, Jiuwei Cui¹⁴

¹National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; ²Shanghai Chest Hospital, Shanghai, China; ³The Second Hospital of Central South University, Changsha, China; ⁴Jinan Central Hospital, Shandong, China; ⁵Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China; ⁶The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; ¬Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China; ⁶Weifang People's Hospital, Weifang, China; ⁶The First Hospital Affiliated to AMU (Southwest Hospital), Luzhou, China; ¹⁰The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China; ¹¹Anhui Provincial Hospital, Hefei, China; ¹²The Harbin Medical Cancer Hospital, The 3rd Department of Thoracic Oncology, Harbin, China; ¹³BeiGene (Beijing) Co., Ltd., Beijing, China; ¹⁴The First Hospital of Jilin University, Changchun, China

Background: Tislelizumab, a monoclonal anti-PD-1 antibody, + chemotherapy was generally well tolerated and had antitumor activity in patients (pts) with advanced NSCLC.

Methods: In this open-label phase 3 study (NCT03594747), 360 Chinese pts with SQ NSCLC (randomized 1:1:1) received IV Q3W: tislelizumab 200 mg (D1) + paclitaxel 175 mg/m² (D1) and carboplatin AUC 5 (D1) in *Arm A*; tislelizumab + *nab*-paclitaxel 100 mg/m² (D1, 8, and 15) and carboplatin in *Arm B*; or paclitaxel and carboplatin in *Arm C*. Patients were stratified by disease stage (IIIB vs IV) and tumor cell PD-L1 expression (<1% vs 1-49% vs ≥50%) via VENTANA PD-L1 (SP263) Assay. The primary endpoint was PFS (RECIST v1.1) by Independent Review Committee; secondary endpoints included ORR, DoR, OS, and safety/tolerability. Association of blood tumor mutational burden (bTMB) with efficacy was explored.

Results: Combination therapy ($Arms\ A$ and B) had significantly improved PFS and higher ORR/DoR vs chemotherapy (C). There was no association between PD-L1 expression and PFS or ORR (**Table**). With an optimized bTMB cutoff of 6 mut/Mb (selected by ROC), combination therapy improved PFS over chemotherapy in pts with high- (HR, 0.31; 95% CI: 0.14, 0.67) and low-bTMB (HR, 0.66; 95% CI: 0.27, 1.59). Median OS was not reached in any arm. Discontinuation of any treatment due to AEs was reported in 12.5%, 29.7%, and 15.4% of pts in $Arms\ A$, B, and C, respectively. The most common grade \geq 3 AE was decreased neutrophil count, in line with known hematological toxicities of chemotherapy. Six

treatment-related AEs led to death (n=1 [A]; n=2 [B]; n=3 [C]); none were solely attributed to tislelizumab.

Conclusions: In pts with SQ NSCLC, combination therapy significantly improved clinical outcomes vs chemotherapy, regardless of PD-L1 expression and bTMB. The safety profile was similar to those of tislelizumab, chemotherapy, and underlying NSCLC, with no new safety signals.

ITT Population N=360	<i>Arm A</i> n=120	<i>Arm B</i> n=119	<i>Arm C</i> n=121
Median PFS, mo	7.6	7.6	5.5
HRª	0.52	0.48	
<i>P</i> -value ^b	0.0001	<0.0001	
ORR, %	72.5	74.8	49.6
Median DoR	8.2	8.6	4.2
PD-L1 ≥50% N=125	<i>Arm A</i> n=42	<i>Arm B</i> n=42	<i>Arm C</i> n=41
Median PFS, mo	7.6	7.6	5.5
HR ^c	0.50	0.43	
ORR, %	78.6	88.1	53.7
PD-L1 1-49% N=91	Arm A n=30	Arm B n=30	Arm C n=31
Median PFS, mo	7.6	NE	4.2
HR ^c	0.44	0.31	
ORR, %	70.0	66.7	41.9
PD-L1 <1% N=144	<i>Arm A</i> n=48	<i>Arm B</i> n=47	<i>Arm C</i> n=49
Median PFS, mo	7.6	7.4	5.5
HR ^c	0.64	0.69	
ORR, %	68.8	68.1	51.0

Abbreviations: DoR, duration of response; HR, hazard ratio; ITT, intention-to-treat; mo, months; NE, not evaluable; ORR, objective response rate; PFS, progression-free survival.

aStratified; bOne-sided log-rank test; Non-stratified.
