Tislelizumab Plus Chemotherapy vs Chemotherapy Alone as First-line Treatment for Advanced Squamous Non-Small Cell Lung Cancer

Jie Wang¹, Shun Lu², Chunhong Hu³, Yuping Sun⁴, Kunyu Yang⁵, Mingwei Chen⁶, Jun Zhao⁷, Guohua Yu⁸, Xiangdong Zhou⁹, Guosheng Feng¹⁰, Yueyin Pan¹¹, Yan Yu¹², Jing Zhang¹³, Liang Liang¹³, Xiao Lin¹³ Jiuwei Cui¹⁴

¹National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; ²Shanghai Chest Hospital, Shanghai, China; ³The Second Hospital of Central South University, Changsha, China; ⁴Jinan Central Hospital, Shandong, China; ⁵Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China; ⁶The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; ⁷Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China; ⁸Weifang People's Hospital, Weifang, China; ⁹The First Hospital Affiliated to AMU (Southwest Hospital), Luzhou, China; ¹⁰The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China; ¹¹Anhui Provincial Hospital, Hefei, China; ¹²The Harbin Medical Cancer Hospital, The 3rd Department of Thoracic Oncology, Harbin, China; ¹³BeiGene (Beijing) Co., Ltd., Beijing, China; ¹⁴The First Hospital of Jilin University, Changchun, China

Background PD-1/L1 inhibitors have provided new treatment approaches for patients with advanced NSCLC; however, resistance or low PD-L1 expression may limit clinical benefit. Tislelizumab, an anti-PD-1 monoclonal antibody, was engineered to minimize binding to $Fc\gamma R$ on macrophages to abrogate antibody-dependent phagocytosis, a mechanism of T-cell clearance and potential resistance to anti-PD-1 therapy. Tislelizumab, alone and with chemotherapy, demonstrated antitumor activity and was generally well tolerated in patients with advanced NSCLC, irrespective of PD-L1 expression.

Method This open-label phase 3 study (NCT03594747) evaluated the efficacy and safety/tolerability of tislelizumab plus chemotherapy as first-line treatment in Chinese patients with histologically confirmed stage IIIB/IV squamous NSCLC. Patients (randomized 1:1:1) received IV Q3W: tislelizumab (200 mg, D1) plus paclitaxel (175 mg/m², D1) and carboplatin (AUC 5, D1) (*Arm A*); tislelizumab plus *nab*-paclitaxel (100 mg/m²; D1, 8, and 15) and carboplatin (AUC 5, D1) (*Arm B*); or paclitaxel (175 mg/m², D1) and carboplatin (AUC 5, D1) (*Arm C*). Patients were stratified by disease stage (IIIB vs IV) and tumor cell PD-L1 expression (<1% vs 1-49% vs ≥50%) as assessed using VENTANA PD-L1 (SP263) Assay. Chemotherapy was administered for 4-6 cycles at investigator's discretion; cross over to tislelizumab monotherapy was allowed for patients in *Arm C*. The primary endpoint was PFS by Independent Review Committee per RECIST v1.1; secondary endpoints included ORR, DoR per RECIST v1.1, OS, and safety/tolerability.

Results Across the 360 patients, PFS was significantly improved and higher ORR/DoR was observed with combination treatment (A and B) versus chemotherapy (C); there was no apparent relationship between PD-L1 expression and PFS or ORR (**Table**). Across all arms, median OS was not reached. Median number of treatment cycles was comparable across all arms and discontinuation of any treatment due to AEs was reported in 12.5%, 29.7%, and 15.4% of patients in Arms A, B, and C, respectively. The most common grade \geq 3 AE was decreased neutrophil count, in line with known hematological toxicity of chemotherapy. Treatment-related AEs leading to death occurred in six patients (n=1 [A]; n=2 [B]; n=3 [C]); none were solely attributed to tislelizumab.

Conclusion First-line tislelizumab plus paclitaxel/carboplatin or *nab*-paclitaxel/carboplatin significantly improved PFS for patients with squamous NSCLC and demonstrated higher ORR than

chemotherapy alone, irrespective of PD-L1 expression. The safety profile was comparable with those of tislelizumab, chemotherapy, and underlying NSCLC; no new safety signals were identified with the addition of tislelizumab to chemotherapy.

ITT Population	Arm A	Arm B	Arm C
(N=360)	(n=120)	(n=119)	(n=121)
Median PFS, mo (95% CI)	7.6	7.6	5.5
	(6.0-9.8)	(5.8-11.0)	(4.2-5.7)
HR ^a (95% CI)	0.52	0.48	
	(0.4-0.7)	(0.3-0.7)	NA
<i>P</i> -value ^b	0.0001	<0.0001	
ORR, % (95% CI)	72.5	74.8	49.6
	(63.6, 80.3)	(66.0, 82.3)	(40.4, 58.8)
Median DoR, (95% CI)	8.2	8.6	4.2
	(5.0, NE)	(6.3, NE)	(2.8, 4.9)
PD-L1 ≥50% TC	Arm A	Arm B	Arm C
(N=125)	(n=42)	(n=42)	(n=41)
Median PFS, mo (95% CI)	7.6	7.6	5.5
	(5.6, 9.8)	(5.6, NE)	(4.1, 7.0)
HR ^c (95% CI)	0.501	0.425	NA
	(0.282, 0.891)	(0.232, 0.776)	
ORR, % (95% CI)	78.6	88.1	53.7
	(63.2, 89.7)	(74.4, 96.0)	(37.4, 69.3)
PD-L1 1-49% TC	Arm A	Arm B	Arm C
(N=91)	(n=30)	(n=30)	(n=31)
Median PFS, mo (95% CI)	7.6	NE	4.2
	(5.5, NE)	(5.6, NE)	(2.8, 6.5)
HR ^c (95% CI)	0.439	0.311	NA
	(0.221, 0.870)	(0.145, 0.664)	
ORR, % (95% CI)	70.0	66.7	41.9
	(50.6, 85.3)	(47.2, 82.7)	(24.5, 60.9)
PD-L1 <1% TC	Arm A	Arm B	Arm C
(N=144)	(n=48)	(n=47)	(n=49)
Median PFS, mo (95% CI)	7.6	7.4	5.5
	(5.5, NE)	(5.6, 9.7)	(4.2, 7.0)
HR ^c (95% CI)	0.636	0.692	NA
	(0.368, 1.101)	(0.406, 1.178)	
ORR, % (95% CI)	68.8	68.1	51.0
	(53.7, 81.3)	(52.9, 80.9)	(36.3, 65.6)

Abbreviations: CI, confidence interval; DoR, duration of response; HR, hazard ratio; ITT, intention-to-treat; mo, months; NA, not available; NE, not evaluable; ORR, objective response rate; PFS, progression-free survival; TC, tumor cell. aStratified; bOne-sided log-rank test; Non-stratified.