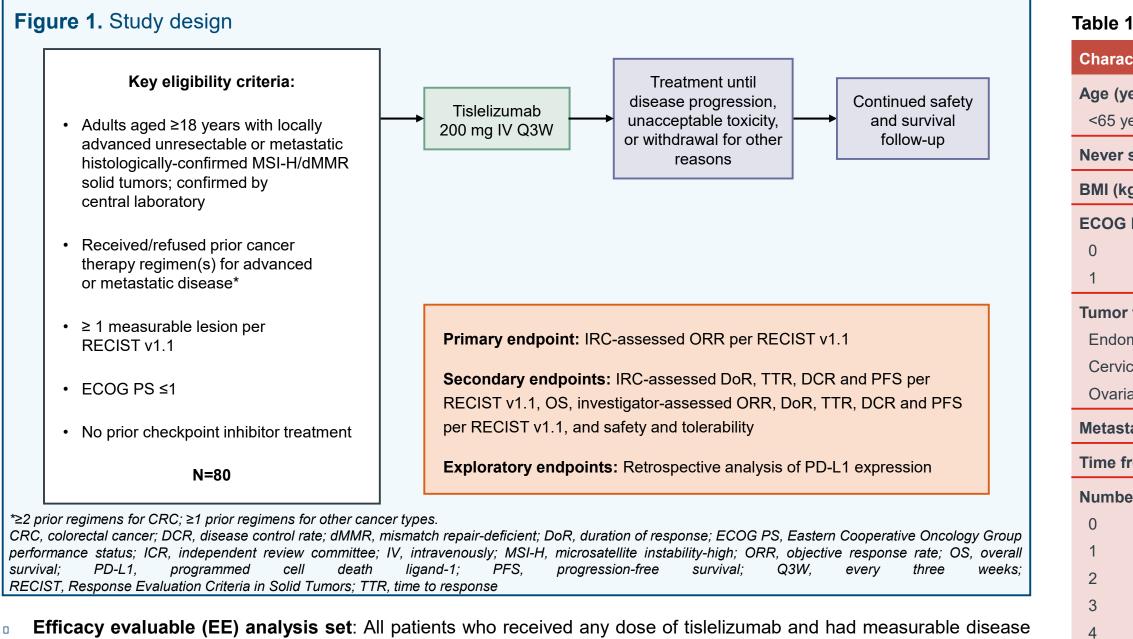


Phase 2 study of tislelizumab monotherapy in previously-treated, locally advanced unresectable or metastatic microsatellite instability-high/mismatch repair-deficient solid tumors: Gynecological cancer subgroup

¹Chongqing University Cancer Hospital, Chongqing, China; ²Beijing Cancer Hospital, Beijing, China; ⁵Hubei Cancer Hospital, Hunan, China; ⁵Hubei Cancer Hospital, Hubei, China; ⁶Harbin Medical University Cancer Hospital, Harbin, China; ⁷Zhongshan Hospital of Fudan University, Shanghai, China; ⁸The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; ⁹BeiGene (Shanghai) Co, Ltd., Shanghai, China. *Corresponding author


Background

- Microsatellite instability-high (MSI-H)/mismatch repair-deficient (dMMR) tumors share common histopathologic characteristics that may render them susceptible to immune checkpoint inhibitors such as anti-programmed cell death protein 1(PD-1)/ programmed death ligand-1 (PD-L1) monoclonal antibodies^{1–3}
- Clinical data indicate MSI-H/dMMR as a strong predictive biomarker for immunotherapy.⁴ This is of particular interest in tumor types such as endometrial cancer, in which the incidence of MSI-H/dMMR has been reported to be nearly 30%⁵
- Tislelizumab is a humanized, IgG4 monoclonal antibody with high affinity and binding specificity for PD-1 that was engineered to minimize Fcy receptor binding on macrophages, thereby abrogating antibody-dependent cellular phagocytosis^{6,7}
- In early and late phase clinical studies, tislelizumab monotherapy was generally well tolerated and had antitumor activity in patients with solid tumors, including MSI-H/dMMR tumors^{8–11}
- Primary results from the Phase 2 RATIONALE 209 study showed that tislelizumab was generally well tolerated and demonstrated a clinically meaningful improvement in the objective response rate (ORR) in patients with previously-treated, locally advanced, unresectable or MSI-H/dMMR solid tumors compared with the historical control rate (45.9% vs 10%, respectively)¹²
- Here, we report results from the updated analysis for patients with gynecological MSI-H/dMMR tumors

Methods

Study design

RATIONALE 209 (NCT03736889) is an ongoing single-arm, non-randomized, open-label, multicenter study conducted at 26 sites in China (**Figure 1**)

- per independent review committee (IRC) according to Response Evaluation Criteria in Solid Tumors (RECIST v1.1) at baseline
- **Safety analysis set**: All patients who received any dose of tislelizumab (overall survival [OS] and safety)
- A binomial exact test with a one-sided $p \le 0.025$ was performed in the analysis of the primary endpoint to test the historical objective response rate (ORR) of 10%. Two-sided Clopper-Pearson 95% confidence intervals (CI) were also calculated. Disease control rate (DCR) was assessed in a similar way to ORR

Decision PD-L1 expression was assessed retrospectively using the Ventana SP263 immunohistochemistry assay. Samples were deemed PD-L1 positive at a cut-off of \geq 1% on tumor cells (TC) or \geq 5% on immune cells (IC)

Patients

Age (ye <65 ye Never s BMI (kg ECOG

Tumor Endon

Cervic Ovaria

Metasta

Numbe

All 17 (100%) patients had undergone a prior anticancer procedure or surgery with curative intent (median 9.92 months) prior to study entry), and 16 (94.1%) patients had received prior anticancer therapy, including 6/17 (35.3%) with prior chemoradiation. The median time from the end of the last therapy to study entry was 2.18 months, and 16 patients had discontinued treatment due to disease progression

ANNUAL MEETING **ON WOMENS' CANCER®**

Dong Wang,¹ Naiyi Zhang,² Aimin Zang,³ Jing Wang,⁴ Yi Huang,⁵ Lin Shen,² Jian Li,² Yanqiao Zhang,⁶ Tianshu Liu,⁷ Yanhong Deng,⁸ Yaling Xu,⁹ Zhezhen Li,⁹ Yidi Wang,⁹ Yunong Gao^{2*}

Conclusions

- This subgroup analysis demonstrates that tislelizumab was clinically active in patients with gynecological MSI-H/dMMR tumors and was generally well tolerated with no new safety signals
- These data support tislelizumab as a potential new treatment option for patients with gynecological MSI-H/dMMR tumors • Further investigation with a larger population is warranted to confirm the clinical benefit of tislelizumab in these patients

Duration of response (DoR) was analyzed among responders using the Kaplan-Meier method, with 95% CI constructed. Progression-free survival (PFS), in the EE analysis set, and OS, in the safety analysis set, were analyzed with similar methodology as DoR. Time to response (TTR) was assessed among responders using descriptive statistics

Safety variables including the extent of exposure to study treatments and the incidence of adverse events (AEs) were assessed among responders using descriptive statistics

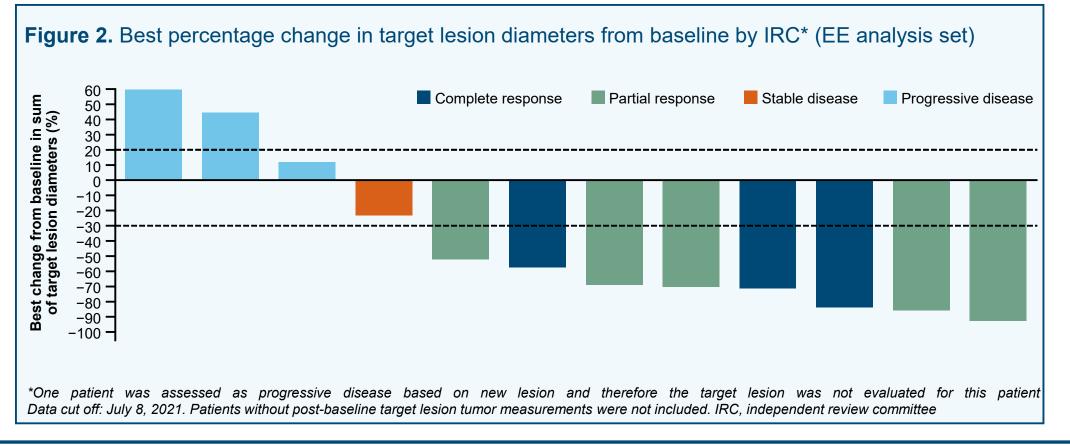
Results

Between Sep 2018–Jul 2021, 80 patients were enrolled, with 75 patients included in the EE analysis set. Of these, 17 had gynecological tumors (15 with endometrial cancer, 1 with cervical cancer, and 1 with ovarian cancer)

Baseline demographic data for the gynecological subgroup are shown in **Table 1**

Table 1. Baseline demographic and clinical characteristics of patients with gynecological tumors (safety analysis set)

cteristic	All gynecological (N=17)
ears), median (range)	55.0 (41–68)
vears, n (%)	15 (88.2)
smoker, n (%)	17 (100)
g/m²), median (range)	24.6 (21–32)
PS at baseline, n (%)	
	7 (41.2)
	10 (58.8)
[.] type, n (%)	
metrial cancer	15 (88.2)
cal cancer	1 (5.9)
an cancer	1 (5.9)
tatic disease at study entry, n (%)	17 (100)
rom initial diagnosis to study entry (months), median (range)	12.2 (4–86)
er of prior anticancer therapeutic regimens, n (%)	
	1 (5.9)
	8 (47.1)
	4 (23.5)
	2 (11.8)
	1 (5.9)
	1 (5.9)


Data cut off: July 8, 2021. BMI, body mass index; ECOG PS, Eastern Cooperative Oncology Group performance status; EE, efficacy evaluable

Clinical outcomes

- patient with ovarian cancer

	All gynecological (N=15)	Cervical cancer (n=1)	Endometrial cancer (n=13)	Ovarian cancer (n=1)
ORR (CR + PR)				
n (%)	8 (53.3)	1 (100)	6 (46.2)	1 (100)
95% CI	26.6, 78.7	2.5, 100	19.2, 74.9	2.5, 100
P-value	<0.0001	_	_	-
Confirmed best overall response, n (%)				
CR	3 (20.0)	0	3 (23.1)	0
PR	5 (33.3)	1 (100)	3 (23.1)	1 (100)
SD	1 (6.7)	0	1 (7.7)	0
Progressive disease	4 (26.7)	0	4 (30.8)	0
Not assessable*	2 (13.3)	0	2 (15.4)	0
Disease control rate (CR + PR + SD)				
n (%)	9 (60.0)	1 (100)	7 (53.8)	1 (100)
95% CI	32.3, 83.7	2.5, 100	25.1, 80.8	2.5, 100
Clinical benefit rate (CR + PR + durable SD ≥24 weeks)				
n (%)	8 (53.3)	1 (100)	6 (46.2)	1 (100)
95% CI	26.6, 78.7	2.5, 100	19.2, 74.9	2.5, 100
Time to response				
Median (range), weeks	9.1 (8.4–39.1)	9.1 (9.1–9.1)	9.1 (8.4–39.1)	8.7 (8.7–8.7)

Not assessable captured patients for whom no post-baseline tumor assessments were performed Data cut off: July 8, 2021. CI, confidence interval; CR, complete response; EE, efficacy evaluable; IRC, independent review committee; ORR, objective response rate; PD, progressive disease; PR, partial response; RECIST, Response Evaluation Criteria in Solid Tumors; SD, stable disease

BUILDING BRIDGES // BREAKING BARRIERS SGO // PHOENIX, ARIZONA // MARCH 18 - 21, 2022

ORR in patients with gynecological tumors was 53.3% (95% CI: 26.6, 78.7), including three complete responses in patients with endometrial cancer (**Table 2**). Median DoR was not reached, but responses were ongoing after 8.3–15.4 months for patients with endometrial cancer, 15.5 months for the patient with cervical cancer, and 23.5 months for the

Median OS, PFS and DoR were not reached. Median TTR was 9.1 weeks and DCR was 60.0% (95% CI: 32.3, 83.7)

Most patients experienced a reduction in tumor lesion diameter during the study (**Figure 2**)

Table 2. Tumor response by IRC assessment per RECIST v1.1 (EE analysis set)

Safety

- of patients (**Table 3**)
- Immune-mediated TEAEs were reported in 7/17 (41.2%) of patients

Table 3. Safety summary (safety analysis set)

Adverse event

Any / ≥ Grade 3

- Serious
- Leading to death
- Leading to treatment discontinuation Leading to treatment modification

*Due to multiple organ dysfunction syndrome. Treatment modification included dose delay and infusion interruption Data cut off: July 8, 2021. TEAE, treatment-emergent adverse event; TRAE, treatment-related adverse event.

II (70)		
AST increased		
ALT increased		
White blood cell count decreased		
Anemia		
Neutrophil count decreased		
Weight increased		
Pyrexia		
Hypoalbuminemia		
Hypothyroidism		
Vomiting		
Rash		
Blood alkaline phosphatase increased		
Gamma-glutamyltransferase increased		
Platelet count decreased		
Malaise		
Edema peripheral		
Hyperuricemia		
Abdominal pain		
Constipation		
Nausea		
Urinary tract infection		
Cough		
oto out officiulus 2 2021 ALT cloning ominater		

References

- 1. Dudley JC, et al. Clin Cancer Res 2016;22:813–20
- 2. Llosa NJ, et al. Cancer Discov 2015;5:43–51
- Giannakis M, et al. Cell Rep 2016;15:857–65
- 4. Yan L, et al. Cancer Commun 2018;38:6
- 5. Hause RJ, et al. Nat Med 2016;22:1342–50 6. Cheng A, et al. Ann Oncol 2018;29:v27–8

Disclosures

This study is sponsored by BeiGene Ltd. Medical writing support for the development of this poster, under direction of the authors, was provided by Victoria Dagwell, MSc, of Ashfield MedComms, an Ashfield Health company, and was funded by BeiGene Ltd.

Poster No. 127

All patients had \geq 1 treatment-emergent adverse events (TEAEs) and \geq Grade 3 TEAEs were reported in 10/17 (58.8%)

The most common Grade \geq 3 TEAE was urinary tract infection (3/17 [17.6%], **Table 4**)

All gynecological (N=17)		
TEAE	TRAE	
17 (100) / 10 (58.8)	17 (100) / 9 (52.9)	
6 (35.3)	4 (23.5)	
1 (5.9)*	0 (0.0)	
1 (5.9)	1 (5.9)	
4 (23.5)	3 (17.6)	

Table 4. TEAEs in \geq 15% of patients (any grade), by all grades and \geq Grade 3 (safety analysis set)

All gynecological (N=17)		
All grade	≥ Grade 3	
9 (52.9)	1 (5.9)	
8 (47.1)	1 (5.9)	
7 (41.2)	0 (0.0)	
7 (41.2)	1 (5.9)	
5 (29.4)	0 (0.0)	
5 (29.4)	0 (0.0)	
5 (29.4)	0 (0.0)	
5 (29.4)	0 (0.0)	
5 (29.4)	0 (0.0)	
4 (23.5)	0 (0.0)	
4 (23.5)	0 (0.0)	
3 (17.6)	0 (0.0)	
3 (17.6)	1 (5.9)	
3 (17.6)	0 (0.0)	
3 (17.6)	0 (0.0)	
3 (17.6)	0 (0.0)	
3 (17.6)	0 (0.0)	
3 (17.6)	0 (0.0)	
3 (17.6)	0 (0.0)	
3 (17.6)	0 (0.0)	
3 (17.6)	3 (17.6)	
3 (17.6)	0 (0.0)	

Data cut off: July 8, 2021. ALT, alanine aminotransferase; AST, aspartate aminotransferase

- 7. Huang D, et al. J Clin Oncol 2018; 36:TPS3112
- 8. Shen L, et al. J Immunother Cancer 2020;8:e000437
- 9. Desai J, et al. J Immunother Cancer 2020;8:e000453 10. Ye D, et al. Cancer Sci 2021;112:305–13
- 11. Zhou C, et al. Cancer Res 2021;81;(13 Suppl):Abs CT039
- 12. Li J, et al. J Clin Oncol 2021;39;(15_suppl):2569