AdvanTIG-105: Phase Ib Dose-Expansion Study of Ociperlimab + Tislelizumab With Chemotherapy in Patients With Metastatic Squamous and Nonsquamous Non-Small Cell Lung Cancer

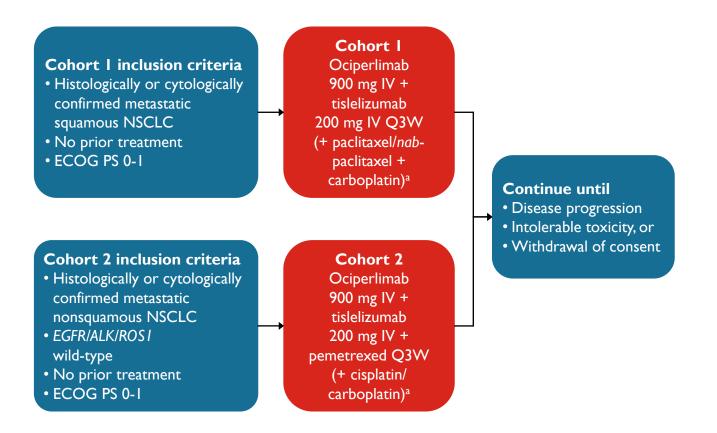
Yan Yu^{*},¹ Dingzhi Huang,² Bo Gao,³ Jun Zhao,⁴ Yanping Hu,⁵ Wu Zhuang,⁶ Steven Kao,⁷ Wen Xu,⁸ Yu Yao,⁹ Tsung-Ying Yang,¹⁰ Youngjoo Lee,¹¹ Jin-Soo Kim,¹² Her-Shyoung Shiah,¹³ Ruihua Wang,¹⁴ Hao Zheng,¹⁵ Wei Tan,¹⁶ Rang Gao,¹⁴ Hye Ryun Kim,¹⁷ Shun Lu¹⁸

¹Department of Internal Medical Oncology, The Third Affiliated Hospital of Harbin Medical University, Harbin, China; ²Department of Thoracic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China; ³Blacktown Cancer and Haematology Centre, Blacktown Hospital, Western Sydney Local Health District, Blacktown, NSW, Australia; ⁴Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China; ⁵Department of Thoracic Oncology, Hubei Cancer Hospital, Wuhan, China; ⁶Department of Medical Oncology, Fujian Provincial Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, China; ⁷Department of Medical Oncology, Chris O'Brien Lifehouse, Camperdown, NSW, Australia; ⁸Division of Cancer Services, Princess Alexandra Hospital, Brisbane, QLD, Australia; ⁹Department of Oncology, First Hospital, Medical College, Xi'an Jiaotong University, Xi'an, China; ¹⁰Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; ¹¹Department of Medical Oncology, National Cancer Center, Goyang, Korea; ¹²Department of Internal Medicine, SMG-SNU Boramae Medical Center, Seoul, Korea; ¹³Division of Hematology and Oncology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan; ¹⁴Clinical Development, BeiGene (Shanghai) Co., Ltd., Shanghai, China; ¹⁵Biostatistics, BeiGene USA, Inc., San Mateo, CA, USA; ¹⁶Clinical Biomarkers, BeiGene (Beijing) Co., Ltd., Beijing, China; ¹⁷Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Centre, Yonsei University College of Medicine, Seoul, Korea; ¹⁸Shanghai Lung Tumor Clinical Medical Center, Shanghai Chest Hospital, Shanghai Jiao Tong U

Disclosures

SK declares invited speaker fees from AZ, BMS, MSD, Pfizer, Roche, Specialised Therapeutic; advisory board from Boehringer Ingelheim, Lilly, MSD, Pfizer, Roche, Specialised Therapeutics, Takeda; research grants from AstraZeneca. **WX** declares invited speaker fees from AZD, Merck, MSD; advisory board from Merck, MSD, Novartis; research grants from Merck. **JSK** declares expert testimony at CJ Healthcare; member of the board of directors at IMBdx; research grants from Alpha Biopharma, Astellas Pharma, AstraZeneca, Boehringer Ingelheim, CJ Healthcare, IL-Yang Pharm, Lilly, Merck, MSD, Novotech, Ono Pharmaceutical, Pfizer, Sanofi, Yuhan; advisory role at Abion INC and CJ Healthcare. **RW** declares employment at BeiGene, Ltd. **HZ** declares employment at BeiGene USA; stocks or shares in BeiGene USA. **WT** declares employment at BeiGene, Ltd.; stocks or shares in BeiGene, Ltd. **RG** declares employment at BeiGene, Ltd. **SL** declares invited speaker role at AstraZeneca, Hansoh, Roche; advisory board role at AstraZeneca, GenomiCare, Hutchison MediPharma, InventisBio Co. Ltd., Menarini, Mirati Therapeutics Inc., Pfizer, Roche, Yuhan Corporation, ZaiLab; research grants from AstraZeneca, BMS Hansoh, Heng Rui BeiGene, Hutchison MediPharma, Roche; principle investigator with AstraZeneca, Hansoh, Hengrui, Beigene, Hutchison, and Roche. YY, DH, BG, JZ, YH, WZ, YY, TYY, YL, HSS, and **HRK** have no conflicts of interest to declare

Background


- Inhibition of TIGIT with anti-PD-1 is a combination that shows enhanced antitumor activity in preclinical models¹⁻³
- Early studies have shown promising antitumor activity of TIGIT inhibitors in combination with PD-1/programmed death-ligand 1 inhibitors in patients with NSCLC⁴⁻⁶
- Ociperlimab is a humanized Fc-intact IgG1 anti-TIGIT mAb that binds to TIGIT with high affinity. Tislelizumab is an anti-PD-1 mAb approved in China in combination with chemotherapy for first-line treatment of NSCLC, or as a second- or third-line treatment for patients with locally advanced or metastatic NSCLC^{3,7}
- In the ongoing AdvanTIG-105 study (NCT04047862), the recommended phase 2 dose was 900 mg ociperlimab IV Q3W plus tislelizumab 200 mg IV Q3W. The combination was generally well tolerated, and preliminary antitumor activity was observed in patients with advanced, unresectable solid tumors⁸
- We report results from Cohorts I and 2 in the dose-expansion part of the phase Ib AdvanTIG-105 study (NCT04047862)

I. Dixon KO, et al. J Immunol. 2018;200(8):3000-3007; 2. Johnston R, et al. Cancer Cell. 2014;26(6):923-937; 3. Chen X, et al. Data presented at AACR 2021. Poster 1854; 4. Nui J, et al. Ann Oncol. 2020;31 (Abs 1410P) [presented at ESMO 2020]; 5. Rodriquez-Abreu D, et al. J Clin Oncol. 2020;38 (Abs 9503) [presented at ASCO 2020]; 6. Ahn MJ, et al. Ann Oncol. 2020;31 (Abs 1400P) [presented at ESMO 2022]; 7. BeiGene, 2022; available at https://ir.beigene.com/news-details/?id=3e337eaa-a5f6-4368-95e0-3e0d35a71254. Accessed August 2022; 8. Frentzas S, et al. Data presented at ASCO 2021. Poster 2583. IV, intravenously; mAb, monoclonal antibody; NSCLC, non-small cell lung cancer; PD-1, programmed cell death protein I; Q3W, every 3 weeks; TIGIT, T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domains.

AdvanTIG-105: Study Design and Baseline Characteristics (Cohorts 1 and 2)

Open-label, multicenter, phase 1b study

Primary endpoint:

Investigator-assessed ORR per RECIST v1.1^b

Key secondary endpoints:

- Investigator-assessed DoR and DCR per RECIST v1.1^b
- Safety^c

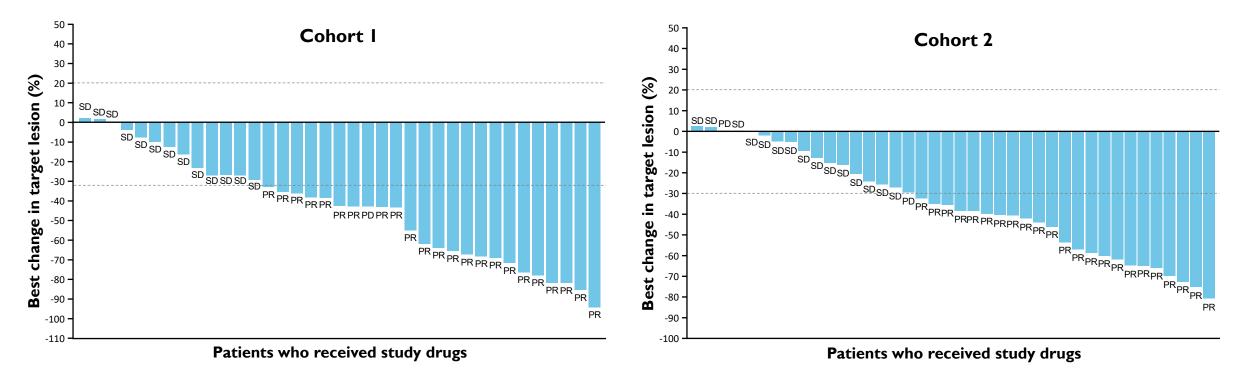
Baseline Characteristics:

- As of June 20, 2022, 84 patients were enrolled (Cohort 1: n=41; Cohort 2: n=43)
- The median age was 66.0 years (range: 43-82) for Cohort I, and 63.0 years (43-79) for Cohort 2. In Cohort I, 85.4% of patients were male, and in Cohort 2, 72.1% of patients were male
- The median study follow-up was 30.7 weeks (range: 1.1-56.0) in Cohort 1 and 30.0 weeks (3.6-64.6) in Cohort 2

^aAdministered Q3W for 4-6 cycles during the induction phase only; ^bEfficacy-evaluable analysis set included all patients who received ≥ 1 dose of study drugs, had evaluable disease at baseline, and ≥ 1 evaluable postbaseline tumor response assessment unless any clinical PD or death occurred before the first postbaseline tumor assessment; ^cSafety analysis set included all patients who received ≥ 1 dose of study drugs. DCR, disease control rate; DOR; duration of response; ECOG PS, Eastern Cooperative Oncology Group Performance Status; IV, intravenously; NSCLC, non-small cell lung cancer; ORR, overall response rate; Q3W, every three weeks; RECIST v1.1, Response Evaluation Criteria in Solid Tumors version 1.1.

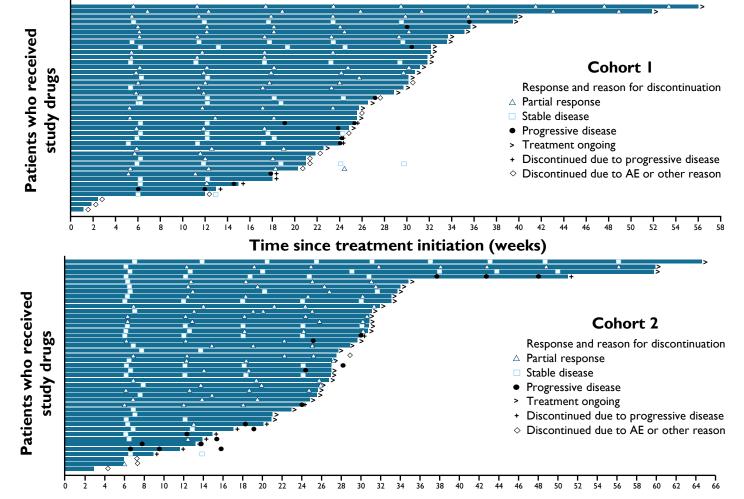
Antitumor Response

The ORR was 57.5% in Cohort I and 54.8% in Cohort 2


	Cohort I (n=40)	Cohort 2 (n=42)	• Of the	e 82 efficacy ev
ORR, n (%)	23 (57.5)	23 (54.8)		its were in Ćo
95% CI	40.9, 73.0	38.7, 70.2	were	in Cohort 2
BOR, n (%)			• The C	
PR	23 (57.5)	23 (54.8)		ORR was 57.5% rt I and 54.8%
SD	13 (32.5)	15 (35.7)	Coho	
PD	I (2.5)	2 (4.8)		-
NE	3 (7.5)	2 (4.8)	• The m	nedian DoR w

BOR, best overall response; CI, confidence interval; DoR, duration of response; NE, not evaluable; ORR, overall response rate; PD, progressive disease; PR, partial response; SD, stable disease.

Best Change in Target Lesion


Twenty-three patients in each cohort had a partial response to treatment

Disease Response Over Time

The median duration of response was not reached in Cohort I or 2

Time since treatment initiation (weeks)

Safety

The RP2D of ociperlimab with tislelizumab and chemotherapy had a manageable safety profile

Patients, n (%)	Cohort I (n=41)	Cohort 2 (n=43)	In total (n=84)
Any grade TEAE	41 (100.0)	43 (100.0)	84 (100.0)
Grade ≥3 TEAE	27 (65.9)	24 (55.8)	51 (60.7)
Serious TEAE	15 (36.6)	17 (39.5)	32 (38.1)
TEAE leading to ociperlimab discontinuation	10 (24.4)	5 (11.6)	15 (17.9)
TEAE leading to tislelizumab discontinuation	10 (24.4)	4 (9.3)	14 (16.7)
Immune-mediated AE ^a	25 (61.0)	20 (46.5)	45 (53.6)

- In total, 84 patients (100.0%) experienced ≥1 TEAE. The most common TEAEs of any grade were anemia (45.2%), neutrophil count decreased (39.3%), and white blood cell count decreased (38.1%)
- Grade ≥3 TEAEs occurred in 51 patients (60.7%) and serious TEAEs occurred in 32 patients (38.1%)
- 15 patients (17.9%) experienced AEs leading to ociperlimab discontinuation, 14 patients (16.7%) experienced AEs leading to tislelizumab discontinuation
- Immune-mediated adverse events occurred in
 45 patients (53.6%)

AE, adverse event; RP2D, recommended phase 2 dose; TEAE, treatment-emergent adverse event.

Conclusions

- Ociperlimab and tislelizumab plus chemotherapy demonstrated antitumor activity in patients with metastatic squamous and nonsquamous NSCLC
- The RP2D of ociperlimab with tislelizumab and chemotherapy showed a manageable safety profile

Acknowledgments

• This study was sponsored by BeiGene, Ltd. Medical writing support for the development of this presentation, under direction of the authors, was provided by Emma Ashman, BSc, of Ashfield MedComms, an Inizio company, and was funded by BeiGene, Ltd.

