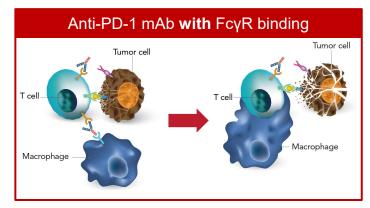


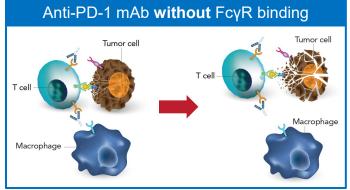
Results from RATIONALE-303: A global Phase 3 study of tislelizumab vs docetaxel as second- or third-line therapy for patients with locally advanced or metastatic NSCLC

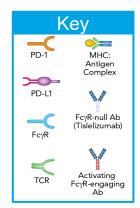
<u>Caicun Zhou,</u>¹ Dingzhi Huang,² Yun Fan,³ Xinmin Yu,³ Yunpeng Liu,⁴ Yongqian Shu,⁵ Zhiyong Ma,⁶ Ziping Wang,⁷ Ying Cheng,⁸ Jie Wang,⁹ Sheng Hu,¹⁰ Zhihua Liu,¹¹ Elena Poddubskaya,¹² Umut Disel,¹³ Andrey Akopov,¹⁴ Mikhail Dvorkin,¹⁵ Yiyuan Ma,¹⁶ Yan Wang,¹⁶ Zhenyu Pan,¹⁶ Cunjing Yu,¹⁶ Gareth Rivalland¹⁷

¹Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai China; ²Department of Thoracic Medical Oncology, Lung Cancer Diagnosis and Treatment Centre, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Tianjin, China; ³Department of Thoracic Medical Oncology, Cancer Hospital of University of Chinese Academy of Sciences & Zhejiang Cancer Hospital, Beijing, China; ⁴The First Hospital of China Medical University, Shenyang, China; ⁵Department of Oncology, Jiangsu Province Hospital, Nanjing, China; ⁵The Affiliated Cancer Hospital of Zhengzhou University/Henan Cancer Hospital, Zhengzhou, China; ¹Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/ Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital and Institute, Beijing, China; ³Department of Medical Thoracic Oncology, Jilin Cancer Hospital, China; °State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; ¹⁰Hubei Cancer Hospital, Wuhan, 430079, Hubei, China; ¹¹Jiangxi Cancer Hospital, China; ¹²Clinical Center Vitamed and Sechenov University, Moscow, Russia; ¹³Acibadem Health Group- Adana Acibadem Hospital/Medical Oncology, Adana, Turkey; ¹⁴Pavlov First State Medical University, Saint-Petersburg, Saint-Petersburg, New Zealand

Disclosures


- Honoraria as a speaker:
 - Lilly China, Sanofi, BI, Roche, MSD, Qilu, Hengrui, Innovent Biologics, C-Stone, LUYE Pharma, TopAlliance Biosciences Inc.,
 Amoy Diagnostics
- Advisor:
 - Innovent Biologics, Hengrui, Qilu, TopAlliance Biosciences Inc.




Background

Anti-PD-1/L1 therapies have been shown to improve OS by 2–4 months vs docetaxel in patients with locally advanced or metastatic NSCLC with disease progression after initial platinum-based chemotherapy^{1–4}

Tislelizumab is an anti-PD-1 antibody engineered to minimize FcγR binding on macrophages, a mechanism of T-cell clearance and potential anti-PD-1 resistance^{5–7}

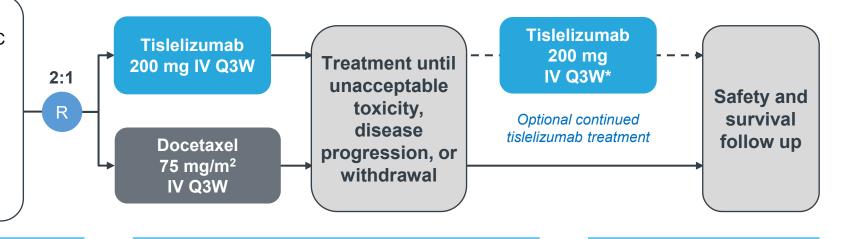
In a Phase 1/2 study, 2L+ tislelizumab demonstrated antitumor activity in multiple advanced solid tumors including NSCLC⁸ and is approved for relapsed/refractory classical Hodgkin lymphoma, 2L treatment of locally advanced or metastatic urothelial carcinoma, 2L and 3L hepatocellular carcinoma and 1L treatment of advanced squamous and non-squamous NSCLC (in China)

The Phase 3 RATIONALE-303 study was initiated to investigate the efficacy and safety of tislelizumab vs docetaxel in patients with NSCLC who had progressed on a prior platinum-containing regimen

¹L, first-line; 2L, second-line; 3L, third-line; Ab, antibody; mAb, monoclonal antibody; MHC, major histocompatibility complex; NSCLC, non-small cell lung cancer; OS, overall survival; PD-1, programmed cell ligand-1; TCR, T-cell receptor

^{1.} Borghaei H, et al. N Engl J Med 2015;373:1627–39; 2. Brahmer J, et al. N Engl J Med 2015;373:123–35; 3. Herbst RS, et al. Lancet 2016;387:1540–50; 4. Rittmeyer A, et al. Lancet 2017;389:255–65;

^{5.} Zhang T, et al. Cancer Immunol Immunother 2018:1079–90; 6. Dahan R, et al. Cancer Cell 2015;28:285–95; 7. Qin S, et al. Future Oncol 2019;15:1811–22; 8. Shen L, et al. J Immunother Cancer 2020;8:e000437corr1


Study design

A Phase 3, open-label, multicenter, randomized study (NCT03358875)

Key eligibility criteria:

- Locally advanced or metastatic NSCLC
- Recurrence or progression during or after platinum-based doublet chemotherapy
- ≤ 2 lines of prior systemic treatment
- No known EGFR mutation or ALK fusion oncogene

N = 805

Stratification

- Histology (squamous vs non-squamous)
- Lines of therapy (2nd vs 3rd)
- PD-L1 status (< 25% vs ≥ 25% TC staining)

Dual primary endpoints

OS in the ITT and PD-L1 ≥ 25% populations

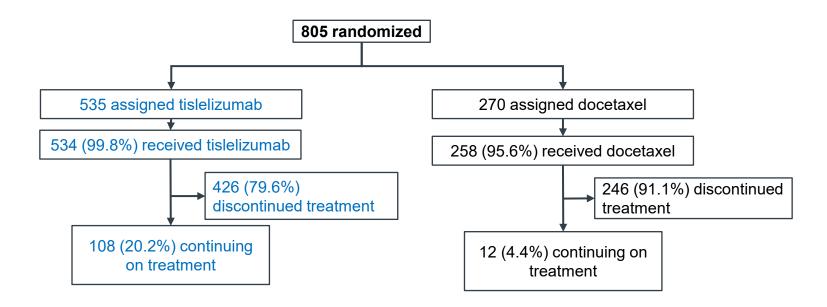
Secondary endpoints

- ORR, DoR, PFS
- HRQoL and safety

PD-L1 ≥ 25% population included all patients with ≥ 25% of TCs with PD-L1 membrane staining (assessed via Ventana SP263 assay)

^{*}Patients receiving tislelizumab will be permitted to continue tislelizumab treatment beyond radio-imaging progression if clinical benefit is seen in the absence of symptomatic deterioration and unacceptable toxicity per investigator's discretion

Statistical considerations

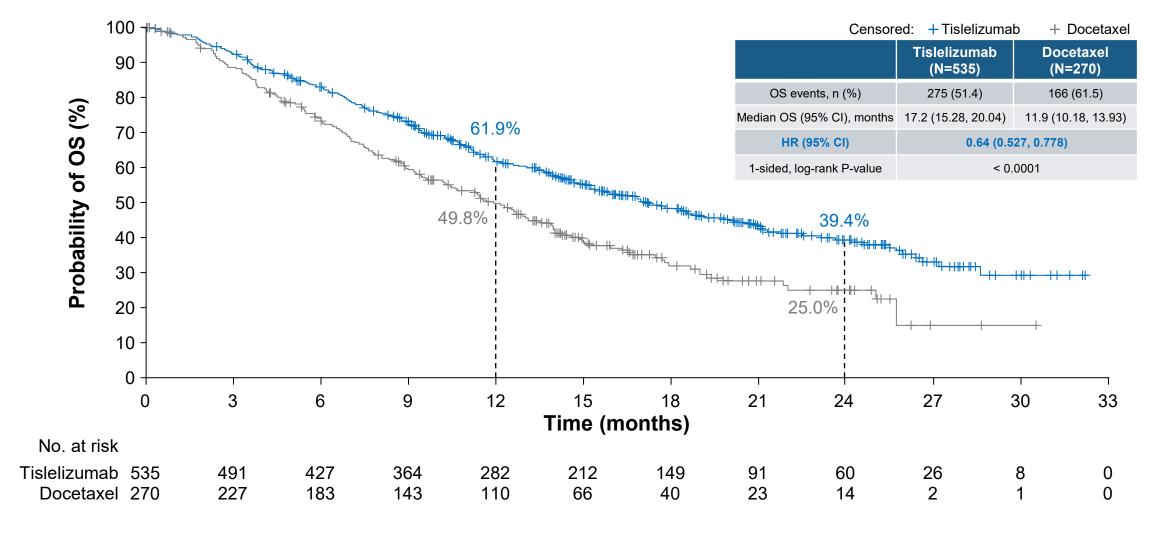

- Primary endpoints: OS in the ITT population and in the PD-L1 ≥ 25% population
- Planned enrolment: ~800 patients
- Overall alpha for the study: one-sided α 0.025
 - 560 death events will provide approximately 87% power to detect an OS HR (tislelizumab/docetaxel) of 0.75 with a one-sided alpha of 0.02 in the ITT
 - 207 death events in the PD-L1 ≥ 25% population will provide approximately 86% power to detect an OS HR of 0.60 with a one-sided alpha of 0.007
- A sequential testing with alpha splitting approach will be implemented

- Interim analysis (reviewed by independent data monitoring committee)
 - For the purposes of the interim analysis, formal OS superiority testing was conducted only in the ITT
 - Pre-specified to be conducted after ~426 death events occurred (76% of planned events) using Hwang-Shih-DeCani spending function with γ parameter of -2

- Interim analysis at data cut-off date:
 10th August 2020
 - Observed number of death events: 441 (54.8%)
 - One-sided alpha level: α 0.0120 for ITT
 (based on the observed number of death events)

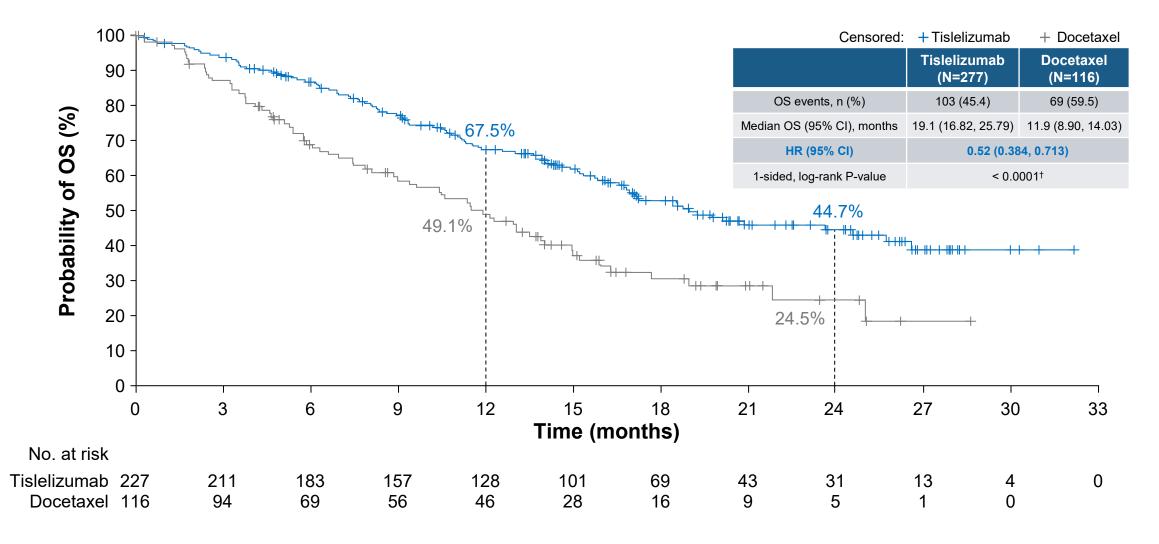
Patient disposition

Patients, n (%)	Tislelizumab (N=535)	Docetaxel (N=270)
Patients discontinued from study	287 (53.6)	184 (68.1)
Patients remaining on study	248 (46.4)	86 (31.9)
Patients receiving tislelizumab treatment beyond radiographic progressive disease	144 (26.9)	-
Patients receiving any subsequent anticancer therapy	266 (49.7)	169 (62.6)
Immunotherapy	31 (5.8)	53 (19.6)


Baseline demographics and characteristics

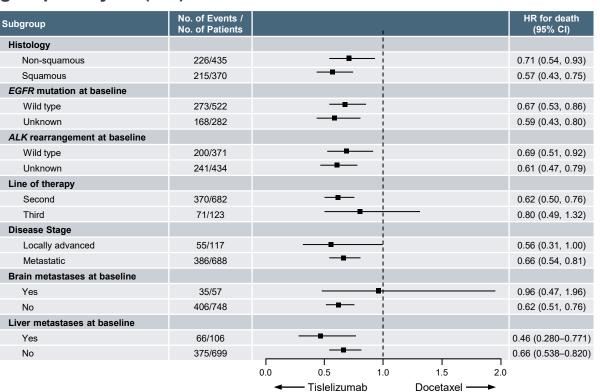
	Tislelizumab (N=535)	Docetaxel (N=270)		
Median age, years (range)	61.0 (28–88)	61.0 (32–81)		
Patients aged < 65 years, n (%)	364 (68.0)	180 (66.7)		
Sex, n (%)				
Male	416 (77.8)	206 (76.3)		
Race, n (%)				
Asian	424 (79.3)	219 (81.1)		
White	94 (17.6)	44 (16.3)		
ECOG performance status, n (%)				
0	115 (21.5)	50 (18.5)		
1	420 (78.5)	220 (81.5)		
Smoking status, n (%)				
Never	162 (30.3)	82 (30.4)		
Current/former	373 (69.7)	188 (69.6)		
PD-L1 expression, n (%)				
≥ 25%	227 (42.4)	116 (43.0)		
< 25%	308 (57.6)	154 (57.0)		
Histology, n (%)				
Squamous	248 (46.4)	122 (45.2)		
Non-squamous	287 (53.6)	148 (54.8)		

	Tislelizumab (N=535)	Docetaxel (N=270)	
EGFR mutation, n (%)			
Wild type	339 (63.4)	183 (67.8)	
Unknown	195 (36.4)	87 (32.2)	
ALK rearrangement, n (%)			
Wild type	241 (45.0)	130 (48.1)	
Unknown	294 (55.0)	140 (51.9)	
Current line of therapy, n (%)			
Second	453 (84.7)	229 (84.8)	
Third	82 (15.3)	41 (15.2)	
Disease stage, n (%)			
Locally advanced	83 (15.5)	34 (12.6)	
Metastatic	452 (84.5)	236 (87.4)	
Brain metastasis, n (%)			
Yes	39 (7.3)	18 (6.7)	
Liver metastasis, n (%)			
Yes	73 (13.6)	33 (12.2)	



Primary endpoint: Overall survival (ITT)

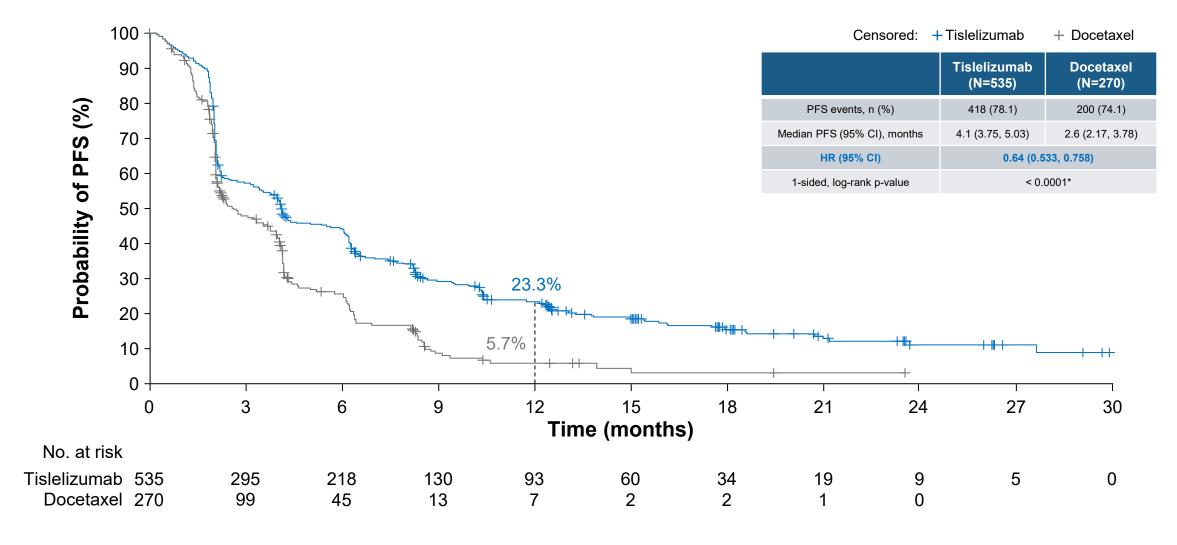
Primary endpoint: Overall survival (PD-L1 ≥ 25%)*



Data cut-off: August 10, 2020

Overall survival (ITT): Subgroup analysis

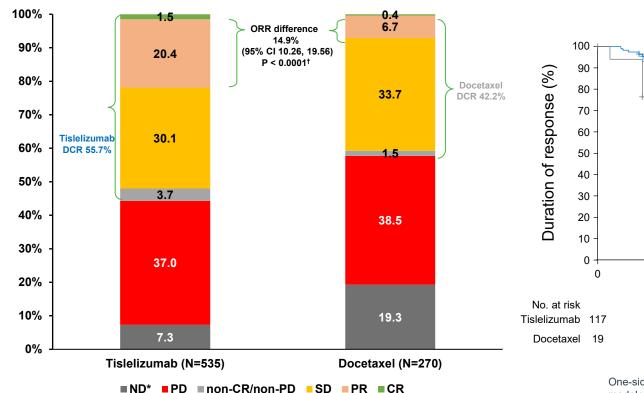
Overall survival subgroup analysis (ITT)

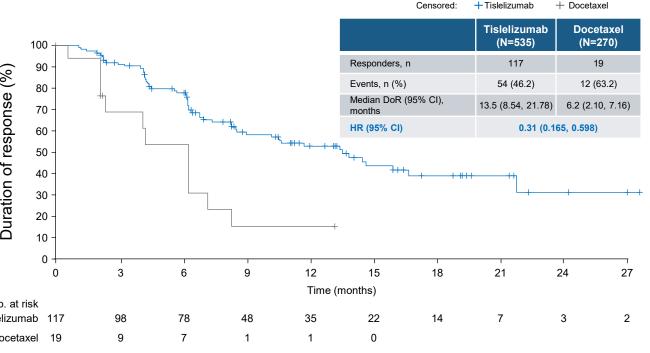

Subgroup	No. of Events / No. of Patients		R for death (95% CI)
Overall	441/805		(0.53–0.78)
Age			
< 65 years	300/544	0.61	(0.48, 0.77)
≥ 65 years	141/261	0.71	(0.50, 0.99)
Sex, n (%)		İ	
Male	347/622		6 (0.45, 0.70
Female	94/183	1.07	(0.69, 1.67
Race, n (%)			
Asian	379/643	─ ■── 0.62	2 (0.51, 0.77
White	49/138	0.61	(0.34, 1.08
ECOG PS		<u> </u>	
0	75/165	0.93	8 (0.56, 1.55
1	366/640	0.60	(0.49, 0.74
Smoking status			
Current/former	312/561	 0.59	0.47, 0.74
Never	129/244	- 	(0.56, 1.15
PD-L1 expression in TC		ŀ	
< 25% TC	269/462	 0.74	(0.58, 0.95
≥ 25% TC	172/343	 0.52	2 (0.38, 0.71
< 1% TC	178/319	0.74	(0.54, 1.00
≥ 1% TC	263/486		3 (0.46, 0.75
< 10% TC	235/410	─■ 0.69	(0.53, 0.90
≥ 10% TC	206/395		(0.44, 0.78
< 50% TC	326/561	 0.68	8 (0.54, 0.85
≥ 50% TC	115/244		6 (0.38, 0.80
		0.0 0.5 1.0 1.5 2.0	

A consistent overall survival benefit was observed for tislelizumab vs docetaxel for almost all studied subgroups

Secondary endpoint: Progression-free survival (ITT)

Data cut-off: August 10, 2020


^{*}Descriptive P-value; One-sided P-value was estimated from stratified log-rank test. HR was estimated from stratified Cox model with docetaxel group as reference group. Medians were estimated by Kaplan-Meier method with 95% Cls estimated using the method of Brookmeyer and Crowley



Secondary endpoint: Disease response (ITT)

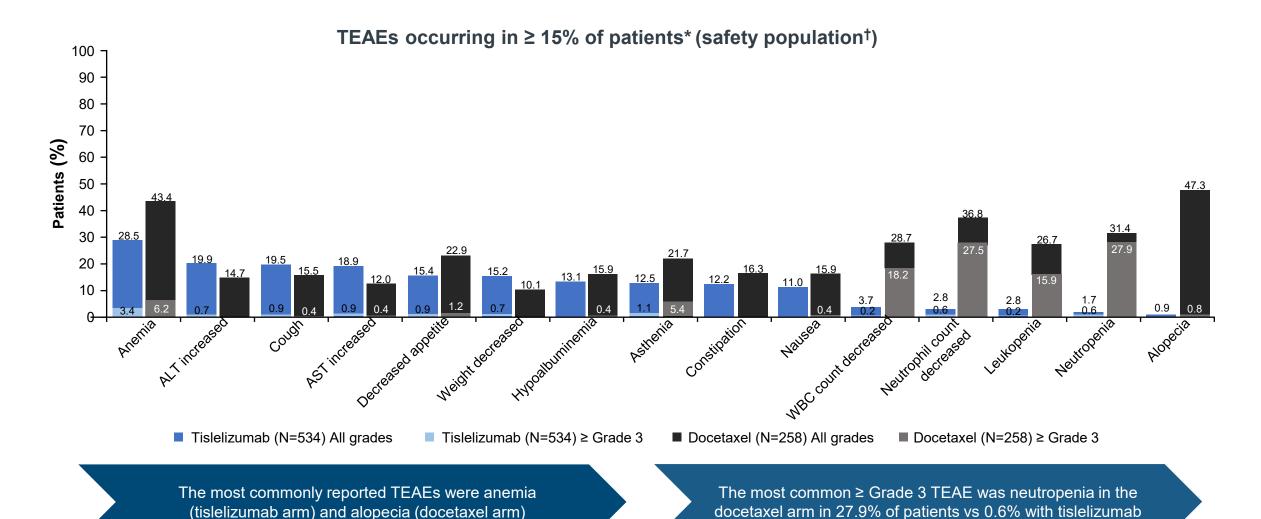
Investigator-assessed disease response per RECIST v1.1

Duration of response

One-sided P-value was estimated from unstratified log-rank test. Hazard ratio was estimated from unstratified Cox model with docetaxel group as reference group. Medians were estimated by Kaplan-Meier method with 95% CIs estimated using the method of Brookmeyer and Crowley

*Included patients who had post-baseline tumor assessment, none of which were evaluable; or patients who had no post-baseline tumor assessments due to death, withdrawal of consent, lost to follow-up or any other reasons †Descriptive P-value; ORR differences and ORs between arms were calculated using the Cochran-Mantel-Haenszel Chi-square test with actual stratification factors as strata

Overall safety

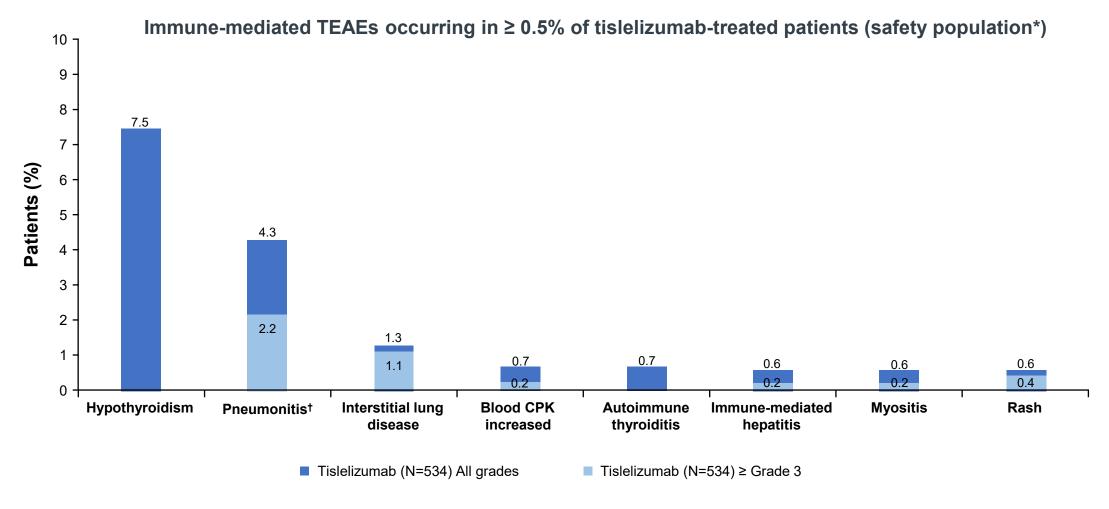

Overall safety profile (safety analysis set*)

	Tislelizumab (N=534)	Docetaxel (N=258)
Mean duration of exposure, weeks (SD)	32.6 (29.70)	14.5 (13.84)
Mean number of treatment cycles (SD)	10.5 (9.37)	4.7 (4.49)
Any TEAE, n (%)	509 (95.3)	254 (98.4)
Treatment-related	390 (73.0)	242 (93.8)
≥ Grade 3 TEAE	206 (38.6)	193 (74.8)
Treatment-related	77 (14.4)	171 (66.3)
Serious TEAE	174 (32.6)	83 (32.2)
≥ Grade 3	138 (25.8)	76 (29.5)
Treatment-related	67 (12.5)	59 (22.9)
TEAE leading to death	32 (6.0)	11 (4.3)
Treatment-related	8 (1.5)	4 (1.6)
TEAE leading to permanent treatment discontinuation	56 (10.5)	32 (12.4)
Treatment-related	32 (6.0)	25 (9.7)

Compared with docetaxel, tislelizumab was associated with a notably lower incidence of ≥ Grade 3 AEs

Most common TEAEs

Data cut-off: August 10, 2020


*In either treatment arm; †Safety population included all patients receiving any dose of study drug

AE grades were evaluated based on NCI- NCI-common terminology criteria for adverse events (version 4.03)

AE, adverse event; ALT, alanine aminotransferase; AST, aspartate aminotransferase; TEAE, treatment-emergent adverse event; WBC, white blood cell

Immune-mediated TEAEs

Summary

- Tislelizumab monotherapy in second- and third-line NSCLC
 - Significantly prolonged OS in the ITT population
 - Significantly prolonged OS in the PD-L1 ≥ 25% population*
 - Tislelizumab showed consistent benefit over docetaxel across all PD-L1 expression subgroups

Tislelizumab prolonged PFS, improved ORR and prolonged DoR versus docetaxel

• Tislelizumab had a tolerable and manageable safety profile consistent with other PD-1/L1 inhibitors, with a lower incidence of ≥ Grade 3 AEs than docetaxel

Acknowledgements

The authors would like to thank the patients and their families for their participation in the study, the investigators Rafal Dziadziuszko MD and Gilberto de Castro Jr MD, and site personnel from 94 sites in 10 countries

They would also like to thank BeiGene Ltd. for sponsoring the study, and all employees of BeiGene who contributed to the study

The study was funded by BeiGene, Ltd. Medical writing support for the development of this presentation, under the direction of the authors, was provided by Simon Lancaster, BSc, of Ashfield MedComms, an Ashfield Health company, and funded by BeiGene, Ltd.

