Tislelizumab versus Docetaxel in Previously Treated Advanced Non-Small Cell Lung Cancer: Final Analysis of RATIONALE-303

Authors: Caicun Zhou, ^{1*} Dingzhi Huang, ² Yun Fan, ³ Xinmin Yu, ³ Yunpeng Liu, ⁴ Yongqian Shu, ⁵ Zhiyong Ma, ⁶ Ziping Wang, ⁷ Ying Cheng, ⁸ Jie Wang, ⁹ Sheng Hu, ¹⁰ Zhihua Liu, ¹¹ Elena Poddubskaya, ¹² Umut Disel, ¹³ Andrey Akopov, ¹⁴ Mikhail Dvorkin, ¹⁵ Yan Wang, ¹⁶ Songzi Li, ¹⁷ Cunjing Yu, ¹⁶ Gareth Rivalland ¹⁸

Affiliations: ¹Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China; ²Department of Thoracic Medical Oncology, Lung Cancer Diagnosis and Treatment Centre, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Tianjin, China; ³Department of Thoracic Medical Oncology, Cancer Hospital of University of Chinese Academy of Sciences & Zhejiang Cancer Hospital, Hangzhou, China; ⁴The First Hospital of China Medical University, Shenyang, China; ⁵Department of Oncology, Jiangsu Province Hospital, Nanjing, China; ⁶The Affiliated Cancer Hospital of Zhengzhou University/Henan Cancer Hospital, Zhengzhou, China; ⁷Department of Thoracic Medical Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/ Beijing), Peking University Cancer Hospital and Institute, Beijing, China; *Department of Medical Thoracic Oncology, Jilin Cancer Hospital, Changchun, China; ⁹Department of Medical Oncology, State Key Laboratory of Molecular Oncology, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; ¹⁰Hubei Cancer Hospital, Wuhan, China; ¹¹Jiangxi Cancer Hospital, Nanchang, China; ¹²Clinical Center Vitamed and Sechenov University, Moscow, Russia; ¹³Acibadem Health Group- Adana Acibadem Hospital/Medical Oncology, Adana, Turkey; 14 Pavlov First State Medical University, Saint-Petersburg, Russia; 15BHI of Omsk Region Clinical Oncology Dispensary, Omsk, Russia; 16BeiGene (Beijing) Co., Ltd., Beijing, China; ¹⁷BeiGene, Ltd., Ridgefield Park, New Jersey, USA; ¹⁸Department of Cancer and Blood, Auckland City Hospital, Auckland, New Zealand

Abstract:

Introduction: In RATIONALE-303 (NCT03358875) tislelizumab significantly improved OS vs docetaxel in the ITT population at the interim analysis (IA), based upon which, tislelizumab was approved in China for treatment of advanced NSCLC patients with progressive disease after chemotherapy. Here, we report outcomes of the final analysis (FA) and *post hoc* biomarker analysis.

Methods: Patients \geq 18 years with histologically confirmed, locally advanced or metastatic squamous or non-squamous NSCLC were randomized (2:1) to IV tislelizumab 200 mg or IV docetaxel 75 mg/m² every 3 weeks. Coprimary endpoints were OS in the ITT and PD-L1 TC \geq 25% populations. The study had one planned IA only in the ITT population. The FA was conducted in the PD-L1 TC \geq 25% population with secondary endpoints (PFS_{INV}, ORR_{INV}, DoR_{INV}) tested sequentially once superiority of OS in PD-L1 TC \geq 25% population was demonstrated in the FA. Exploratory biomarker analyses included PD-L1 expression, tumor mutation burden (TMB), and gene expression profile.

Results: Between November 30, 2017 and April 8, 2020, 805 patients were randomized to tislelizumab (N=535) or docetaxel (N=270). The co-primary endpoint of OS (ITT) was met at IA (data cut-off August 10, 2020). At data cut-off (July 15, 2021), FA was conducted in the PD-L1 TC ≥25% population. Median follow-up times (reverse Kaplan-Meier

method) were 30.9 months for tislelizumab and 27.5 months for docetaxel. In ITT population, tislelizumab continued to improve OS vs docetaxel (median OS 16.9 months vs 11.9 months, respectively; HR=0.66). In PD-L1 TC ≥25% population, tislelizumab showed a statistically significant OS benefit vs docetaxel (median OS 19.3 months vs 11.5 months; HR=0.53; p<0.0001). A consistent OS benefit was observed for almost all pre-defined subgroups. The study also met secondary endpoints at this FA. In the *post hoc* biomarker analysis, the association of TMB and genetic alterations including single target gene mutation or pathway mutations with clinical outcomes was further explored. Compared with TMB which was correlated with PFS benefit for tislelizumab vs docetaxel but was not correlated to OS benefit, except at the highest cutoff (≥14 mut/Mb), *NOTCH1−4* mutations showed association with better tislelizumab efficacy, which was correlated with both PFS and OS benefit (**Table**). No new safety signals were identified.

Conclusion: Tislelizumab continued to improve OS vs docetaxel in pretreated advanced NSCLC regardless of PD-L1 expression at final analysis. Biomarker analysis implied the potential association of *NOTCH1–4* mutations with greater tislelizumab efficacy for both OS and PFS.

Table

	ITT population		PD-L1 TC ≥25% population		NOTCH1-4 mut population		NOTCH1-4 WT population	
	TIS	D	TIS	D	TIS	D	TIS	D
	(N=535)	(N=270)	(N=227)	(N=116)	(N=26)	(N=15)	(N=218)	(N=101)
	365	206						
OS events, n (%)	(68.2)	(76.3)	141	87 (75.0)	13 (50.0)	13 (86.7)	152	79
[IA]	[275	[166	(62.1)				(69.7)	(78.2)
	(51.4)]	(61.5)]						
	16.9	11.9						
Median OS (95% CI), mos [IA]	(15.2, 19.1) [17.2 (15.3, 20.0)]	(9.6, 13.5) [11.9 (10.2, 13.9)]	19.3 (16.5, 22.6)	11.5 (8.2, 13.5)	24.7 (14.2, NE)	7.7 (3.3, 14.3)	15.7 (13.9, 17.9)	12.9 (10.4, 14.9)
Stratified HR [‡] (95% CI) [IA]	0.66 (0.56, 0.79) p<0.0001*† [0.64 (0.53, 0.78) p<0.0001*]		0.53 (0.40, 0.70) p<0.0001*		0.22 (0.10, 0.49) p=0.0002*†		0.75 (0.57, 0.99) p=0.0390* [†]	

PFS _{INV} events, n	451	208	177	94 (81.0)	14 (53.8)	14 (93.3)	187	83 (82.2)
(%)	(84.3)	(77.0)	(78.0)	3 ! (01:0)	2 (33.3)	2 . (33.3)	(85.8)	00 (02.2)
Median PFS _{INV}	4.2	2.6	6.5	2.4	14.1	2.6	4.1	3.3
(95% CI), mos	(3.9, 5.5)	(2.2, 3.8)	(6.2, 8.3)	(2.1, 4.1)	(6.2, NE)	(2.0, 4.1)	(2.2, 6.2)	(2.1, 4.1)
Stratified HR [‡] (95% CI)	0.63 (0.53, 0.75)		0.37 (0.28, 0.49)		0.17 (0.08, 0.37)		0.72 (0.55, 0.95)	
ORR _{INV} , n (%)	121 (22.6)	19 (7.0)	85 (37.4)	8 (6.9)	-	-	-	-
Median DoR _{INV} , (95% CI), mos	13.5 (8.5, 19.6)	6.0 (2.1, 7.2)	11.9 (8.3, 19.6)	4.2 (0.6, 6.1)	-	-	-	-

IA data cut-off: August 10, 2020

FA data cut-off: July 15, 2021

Abbreviations: CI, confidence intervals; D, docetaxel; DoR_{INV}, investigator-assessed duration of response; FA, final analysis; HR, hazard ratio; IA, interim analysis; ITT, intent-to-treat; IV, intravenous; mos, months; mut, mutation; NE, not estimable; NSCLC, non-small cell lung cancer; ORR_{INV}, investigator-assessed objective response rate; OS, overall survival; PD-L1, programmed death-ligand 1; PFS_{INV}, investigator-assessed progression-free survival; TC, tumor cell; TIS, tislelizumab; vs, versus; WT, wild type

^{*1-}sided stratified log-rank test

[†]Descriptive p value

[‡]Stratified by histology (squamous vs non-squamous) and lines of therapy (second vs third)